est egyptian scholastic test

EST II – Individual Subject Test

Student's Name	
National ID	

Test Center:

Subject: Math

Duration: 60 minutes

50 Multiple Choice Questions

Instructions:

- Place your answer on the answer sheet. Mark only one answer for each of the multiple choice questions.
- Avoid guessing. Your answers should reflect your overall understanding of the subject matter.
- Calculator is allowed. When a calculator is used, be aware of switching between radian mode and median mode.
- Formula sheet is available at the end of the booklet for your reference.

- 1. If $3^{x+3} = 243$, what is the value of 5^{x-1} ?
 - A. 5
 B. 25
 C. 125
 D. 625
 E. 3125
- 2. Given the equation x + 2y 8i = 7 + 2xi + 8yi, what real values of x and y satisfy the equation?
 - A. x = 4, y = -5.5B. x = 4, y = -1.5C. x = 10, y = -1.5D. x = 18, y = -5.5E. x = 8, y = -0.5
- 3. If $f(x) = -3\cos x$, $g(x) = 3\sqrt{7}$, and $h(x) = x^2 3$, find the value of $f[(h \circ g)(2)]$.
 - A. -2.99
 B. -1.5
 C. 1
 D. 5.94
 E. 7.93
- 4. If we shade a region in a semi-sphere with radius *r*, what would be the area of the shaded region?
 - A. $4\pi r$ B. $\frac{5}{2}\pi r^2$ C. $\frac{7}{2}\pi r^2$ D. $4\pi r^2$ E. $\frac{4}{3}\pi r^2$
- 5. If $\frac{1}{x+1} \frac{2}{x+3} > 2$, which of the following could not be a value for x?
 - **A.** −3.5 **B.** −3.1 **C.** −0.7 **D.** −1 **E.** −0.95

- 6. Given two points A(1, -2, 1) and $B(5, 6, z_B)$, find a value of z_B if the distance in space between the two points is equal to 9.
 - **A.** 1
 - **B.** 2
 - **C.** 3
 - **D.** −1
 - **E.** −2

7. If $\vec{V} = 2\vec{i} + 7\vec{j}$ and $\vec{M} = -3\vec{i} + \vec{j}$, the resultant vector of $5\vec{V} + 2\vec{M}$ equals:

- **A.** $-11\vec{\imath} + 19\vec{j}$ **B.** $4\vec{\imath} + 37\vec{j}$ **C.** $16\vec{\imath} + 37\vec{j}$ **D.** $4\vec{\imath} + 33\vec{j}$
- **E.** $16\vec{\imath} + 33\vec{j}$
- 8. Find the measure of the obtuse angle in triangle *ACB*.
 - **A.** 20.2
 - **B.** 100.2
 - **C.** 115
 - **D.** 118.4
 - **E.** 120.4
- 9. If $2^{\log_2 x} + \log_3 3^{4x} = 25$, then x = ?
 - A. 5B. 0.83C. −1.66
 - **D.** 1.78
 - **E.** 1.92
- **10.** In a Chemistry test, John has two papers, A and B, containing 7 and 11 questions respectively. He has to attempt 12 questions in total, selecting at least 4 from each paper. How many ways can John select a question?

В

A. 1.52 × 10¹⁰
B. 19041
C. 16401
D. 15939
E. 10164

С

11

8.1

11. If $\sin\left(\frac{\pi}{2} - \theta\right) = 0.8$, what is the value of $\sin\theta \times \cot\theta$?

A. 0.36**B.** 0.44

- **C.** 0.59
- **D.** 0.8
- **E.** 1

12. Consider the ages of your 6 cousins as follows:6, 19, 14, 13, 7, 11What is the standard deviation of their ages?

A. 3.8
B. 4.38
C. 5.14
D. 11.49
E. 22

13. If x = 4(2i - 3), find x^3 .

A. 2944*i* + 576
B. 2944*i* - 2496
C. -192*i* + 80
D. -192*i* + 208
E. 46*i* + 9

14. The driving distance from Giza to Ashmoun is 104 *Km*. On a road trip from Giza to Ashmoun, Wassim drove the first 50 *Km* at 65 *Km* per hour, then the next 50 *Km* at 80 *Km* per hour, and the rest at 54 *Km* per hour. What was his average speed, in *Km* per hour, for the entire trip?

A. 6.3**B.** 23.6

- **C.** 66.3
- **D.** 70.8
- **E.** 78.5
- **15.** 2k, 3k + 1, and 22 are the consecutive terms of an arithmetic sequence. What is the value of k?
 - **A.** −10 **B.** −1 **C.** 5 **D.** 10
 - **E.** 16

16. The sum of the roots of $(x - \sqrt{2})^2 (2x - \sqrt{2})(x + \sqrt{2}) = 0$ is

A. $\sqrt{2}$ B. 1 C. $\frac{3\sqrt{2}}{2}$ D. $\frac{\sqrt{2}}{2}$ E. $\frac{1}{2}$

17. Which of the following could be the asymptote of $\frac{(y-3)^2}{16} - \frac{x^2 - 14x + 49}{25} = 1$

A. $y = \frac{-5x + 47}{4}$ B. $y = \frac{-4x + 43}{5}$ C. $y = \frac{-5x + 43}{4}$ D. $y = \frac{-4x + 47}{5}$ E. $y = \frac{-5x - 23}{4}$

18. If $\cos x = 0.24$, what is the value of $\sin^2 x$?

A. 0.97
B. 0.9424
C. 0.76
D. 0.52
E. 0.5

19. In rectangle ABCD, $AC = 5 \ cm$ and $m \angle BAC = 25^\circ$. Find the perimeter of triangle ABC.

A. 15 cm
B. 11.64 cm
C. 11 cm
D. 9.57 cm
E. 4.78 cm

20. Find the coordinates of the foci of $\frac{(x-3)^2}{9} + \frac{y^2}{49} = 1$.

A. $(3, 2\sqrt{10})$ and $(3, -2\sqrt{10})$ B. $(3 - 2\sqrt{10}, 0)$ and $(3 + 2\sqrt{10}, 0)$ C. $(3, 2\sqrt{10})$ and $(3 - 2\sqrt{10}, 0)$ D. $(0, 3 - 2\sqrt{10})$ and $(0, 3 + 2\sqrt{10})$ E. (0, 0) and $(3, 2\sqrt{10})$ **21.** What is the oblique/slant asymptote of the following function: $(x) = \frac{5x^2 - 2}{x - 3}$?

A. y = x + 15B. y = 5xC. y = 5x + 15D. y = 5x + 13E. $y = 5x + 15 + \frac{43}{x - 3}$

- **22.** Mr. Hernandez has 8 Christmas greeting cards and he wants to send them to 5 of his friends. How many ways can he send a greeting card?
 - A. 6720
 B. 3136
 C. 112
 D. 56
 E. 40
- **23.** In the figure to the right, the two circles touch each other internally with A being the center of the big circle with a radius equal to 6 m, and F being the center of the small circle that passes through A.

Find the area of the shaded region in the figure.

A. 141.37 m²
B. 9.42 m²
C. 84.823 cm²
D. 8482.3 cm²
E. 848230 cm²

- C F •
- **24.** In a graph of $y = -3^x$, which following statement/s is/are true?
 - I. The graph is continuous and decreasing.
 - II. The graph passes through points (0, -1) and (-1, 0).
 - III. The range is $\{y \mid y < 0\}$.
 - A. I only
 - **B.** I and II
 - C. II only
 - **D.** I and III
 - E. II and III

25. *ADTK* is a rectangle. Find the area of triangle *MHT*.

- **27.** Patrick organized a sports event at his village. 243 people joined the tournaments in which they had to choose to play ping-pong, boxing, or golf. The ratio of ping-pong to boxing to golf was 9: 10: 8. How many people joined the boxing tournament?
 - **A.** 72
 - **B.** 81
 - **C.** 90
 - **D.** 99
 - **E.** 100

28. What is the slope of the line perpendicular to the line whose equation is $\frac{-x}{3} + \frac{7y}{2} = -1$?

A.
$$\frac{2}{21}$$

B. $-\frac{21}{2}$
C. $\frac{21}{2}$
D. $-\frac{2}{21}$
E. $-\frac{6}{7}$

- **29.** In the set of numbers: 5, 10, 20, 10, 30, 25, consider *M* as the median and *m* as the mode of the set. What is the average of *M* and *m*?
 - A. 10B. 12.5C. 13.33
 - **D.** 13.75
 - **E.** 16.25

30. What is the domain of the function defined by $f(x) = \frac{x-3}{x^2 - 5x - 14}$?

- **A.** All real numbers
- **B.** All real numbers except 7
- C. All real numbers except 0 and 7
- **D.** All real numbers except 0 and -2
- **E.** All real numbers except -2 and 7
- **31.** In 2018, the population in China was 1,427,647,786.

According to data, China's population growth rate is 0.59% per year. What will the population be in China in 2021?

- **A.** 8,423,121
- **B.** 1,436,070,908
- C. 1,444,543,726
- **D.** 1,452,917,152
- **E.** 1,453,142,111

- **32.** ABCD is a parallelogram such that the base AB = 4h, with h being the height of the parallelogram. Find the length of \overline{AB} if the area of the parallelogram is equal to 625 cm^2 .
 - **A.** 50 *m*
 - **B.** 2500 *m*
 - **C.** 50 *cm*
 - **D.** 2500 cm
 - **E.** 100 *cm*

33. Which of the following cannot be the sides of an obtuse triangle?

A. 9,10,13.6
B. 8,12,14.5
C. 6,7,10
D. 7,9,11
E. 9,11.2,15

34. If $y = \frac{2x+1}{x} - 1$, what value does y approach as x gets infinitely large?

- **A.** −1
- **B.** 0
- **C.** 1
- **D.** 2
- **E.** *y* approaches a positive infinite number
- **35.** Consider the function $f(x) = 2x^5 3x^3 + x$. Which of the following statement/s is/are true?
 - I. It is an even function
 - II. It is an odd function.
 - III. It is symmetric about the *x*-axis.
 - **A.** I only
 - **B.** II only
 - C. III only
 - **D.** I and III
 - E. II and III

- 36. What could be the area of a rectangle whose width is equal to (2x 1) in centimeters, and its length is triple its width? (Consider x = 5)
 - **A.** 344 *cm*²
 - **B.** $324 \ cm^2$
 - **C.** 81 *cm*²
 - **D.** $95 \ cm^2$
 - **E.** $243 \ cm^2$

- **37.** In the figure above, the graph represents the function $f(x) = 2x^3 3x + 1$. How many roots does it have? Consider the shaded region is bound by the *x*-axis, *y*-axis, and a straight line passing through (0, 1) and (0.366, 0). What is the area of the shaded region?
 - A. 2 roots, and 0.183 square units
 - B. 3 roots, and 0.183 square units
 - C. 2 roots, and 0.366 square units
 - **D.** 3 roots, and 0.366 square units
 - E. 4 roots, and 0.366 square units

38. Given the two functions: $f(x) = \begin{cases} x+5, \ x < 0 \\ 2x-1, \ x \ge 0 \end{cases}$, and $g(x) = \begin{cases} 3x-1, \ x < -3 \\ 2x+3, \ -3 \le x < 5, \\ 4x+1, \ x \ge 5 \end{cases}$ find the value of $(f \circ g)(-2)$.

- **A.** −3
- **B.** −2
- **C.** −1
- **D.** 4
- **E.** 9
- **39.** ADF is an isosceles triangle at F inscribed in circle (C) of center O and diameter \overline{AD} . What is the value of $1 - \tan^2 A$ if the radius of the circle is equal to 6 cm?
 - **A.** 0 **B.** 1 **C.** $6\sqrt{2}$ **D.** 6
 - **E.** 12
- **40.** Which translation in comparison to its parent function is true about the graph of f(x) = 2x 1?
 - **A.** The graph is translated 1 unit up, and it is stretched vertically.
 - **B.** The graph is translated 1 unit up, and it is stretched horizontally.
 - C. The graph is translated 1 unit down, and it is stretched vertically.
 - **D.** The graph is translated 1 unit down, and it is stretched horizontally.
 - **E.** The graph is translated 1 unit down only.
- **41.** Given the two functions: f(x) = x 2, and g(x) = x + 2, which of the following statement/s is/are true about graph f and g in the *xy*-plane?
 - I. The two functions are inverse functions.
 - II. They intersect at the origin.
 - III. Both functions are parallel.
 - **A.** I only
 - **B.** II only
 - **C.** III only
 - **D.** I and II
 - E. I and III

42. What are the values of *x* and *y* in the figure to the right?

A. x = 20.54, y = 41.63B. x = 41.63, y = 20.54C. x = 55, y = 1D. x = 31, y = 17E. x = 17, y = 31

43. A(1,3) and B(4,2) are two points on a xy-plane of origin O.

 \overrightarrow{Bx} is parallel to \overrightarrow{OA} , and T is a point on \overrightarrow{Bx} such that OABT is a parallelogram. Find the area of triangle OTN with N as the intersection of \overrightarrow{BT} with the x-axis.

- A. 1.67
 B. 3.33
 C. 6.66
 D. 10
- **E.** 20

44. Solve $4\sin^2 x - 1 = 0$ for *x*.

- **A.** $x = -60^{\circ}$ **B.** $x = 0^{\circ}$ **C.** $x = 15^{\circ}$ **D.** $x = 30^{\circ}$ **E.** $x = 45^{\circ}$
- **45.** *FGHI* is a parallelogram such as the base is equal to $(2x 3)^2$ while the height is double the base. Which expression represents half the area of this parallelogram?

A. $16x^4 - 96x^3 + 216x^2 - 216x + 81$ B. $2(16x^4 - 96x^3 + 216x^2 - 216x + 81)$ C. $3(16x^4 - 96x^3 + 216x^2 - 216x + 81)$ D. $4(16x^4 - 96x^3 + 216x^2 - 216x + 81)$ E. $8x^2 - 24x + 18$

- **46.** *FERG* is a square inscribed in the circle of center *A*. What is the area of the shaded region in the figure?
 - **A.** 1.64
 - **B.** 4.475
 - **C.** 6.72
 - **D.** 17.9
 - **E.** 165.7

- **47.** The equation circle (C) is $(x 3)^2 + (y + 2)^2 = r^2$. It passes through G (6, 3). Find the circumference of the circle.
 - **A.** 7.58**B.** 15.17
 - **C.** 17.77
 - **D.** 18.32
 - **E.** 36.63

48. Which matrix equation represents the system : $\begin{cases} 3y + 1 = 2x \\ 3x - 4y = 1 \end{cases}$

- A. $\begin{bmatrix} 3 & 1 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ B. $\begin{bmatrix} 3 & -2 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$
- C. $\begin{bmatrix} -2 & 3 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$
- **D.** $\begin{bmatrix} 3 & -2 \\ -4 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$
- **E.** $\begin{bmatrix} -2 & 3 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

- **49.** If f(x) = cx + b and g(x) = -dx + e are the equations of two consecutive sides of a parallelogram, which of the following is true in order for the parallelogram to be a rectangle?
 - **A.** c = 2 **B.** c = -d **C.** $c = -\frac{1}{d}$ **D.** cd = 0**E.** cd = 1
- 50. The figure to the right shows a regular heptagon and a right triangle MJI.

If $m \angle KJI = \frac{1}{7}x - 10$ and $m \angle MIJ = 3y + 4$, what would be the values of x and y?

A. x = 970 and y = 51.43B. x = 11.52 and y = 51.43C. x = 138.57 and y = 11.52D. x = 970 and y = 11.52E. x = 970 and y = 138.57 THE FORMULAS BELOW MAY BE USEFUL IN ANSWERING QUESTIONS ON THIS TEST.

 $S = 4\pi r^2$ is the formula for the surface area of a sphere with a radius of r.

 $V = \frac{1}{3}\pi r^2 h$ is the formula for the volume of a right circular cone with a radius of r and a height of h.

 $V = \frac{4}{3}\pi r^3$ is the formula for the volume of a sphere with a radius of r.

 $V = \frac{1}{3}Bh$ is the formula for the volume of a pyramid with a base area of *B* and a height of *h*.