SAT Math

15 Complete Tests
Designed to help Students get
 Test \#1

Math Test - No Calculator

25 MINUTES, 20 QUESTIONS

Turn to Section 3 of your answer sheet to answer the questions in this section.

DIRECTIONS

For questions 1-15, solve each problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 16-20, solve the problem and enter your answer in the grid on your answer sheet. Please refer to the directions before question 16 on how to enter your answers in the grid. You may use any available space in your test booklet for scratch work.

NOTES

1. The use of a calculator is not permitted.
2. All variables and expressions used represent real numbers unless otherwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the domain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

REFERENCE

$A=\pi r^{2}$

$A=\ell w$
$C=2 \pi r$

$Y=\pi r^{2} h$

$c^{2}=a^{2}+b^{2}$
$A=\frac{1}{2} b h$

Special Right Triangles

$V=\frac{1}{3} \pi r^{2} h$
$V=\frac{1}{3} \ell w h$
The number of degrees of arc in a circle is 360 .
The number of radians of arc in a circle is 2π.
The number of the measures in degrees of the angles of a triangle is 180 .

1

If $\frac{2 x-3}{2}=k-1$ and $k=5$, what is the value of $2 x$?
A) 4
B) 5.5
C) 8
D) 11

2

$$
(5+3 i)-(8-2 i)=a+b i
$$

In the equation above, a and b are real numbers.
If $i=\sqrt{-1}$, what is the value of b ?
A) -1
B) 1
C) -5
D) 5

3

If Claire paid k dollars for a computer that was only 20 dollars more than half the original price, what was the original price, in dollars?
A) $k+20$
B) $k-40$
C) $2 k-20$
D) $2 k-40$

Jenny is on the school swim team and has swim practice m hours in the moming and p hours in the evening each day. The schedule is the same each day. If she swims k hours for five days, which of the following is the expression for m ?
A) $\frac{k-p}{5}$
B) $\frac{k-5 p}{5}$
C) $k-5 p$
D) $5(k-p)$

5

A certain business is marketing its product and has determined that, when it raised the selling price of its product, its sales went down. The number of units sold, P, is modeled by the equation $P=1200-20$ s, where s is the selling price, in dollars. Based on this model, what is the decrease in selling price from 700 units sold to 900 units sold?
A) 5
B) 10
C) 15
D) 20

$$
\left(x^{2}+y^{2}\right)^{2}-\left(x^{2}-y^{2}\right)^{2}
$$

Which of the following is equivalent to the expression above?
A) $x^{4}-y^{4}$
B) $2\left(x^{2}+y^{2}\right)$
C) $2 x^{2} y^{2}$
D) $4 x^{2} y^{2}$

7

Kimberly earns k dollars per week. At this rate how many weeks will it take her to earn p dollars?
A) $\frac{p}{k}$
B) $\frac{k}{p}$
C) $k p$
D) $\frac{10 p}{k}$

9

$$
\begin{aligned}
& 2 x+b y=10 \\
& c x+4 y=15
\end{aligned}
$$

In the system of equations above, a and b are constants and $a=2 b$. If the system has no solution, which of the following could be a possible value of a ?
A) -2
B) $\frac{1}{2}$
C) 4
D) 8

$$
f(x)=\alpha x^{2}-15
$$

For the function f defined above, a is a constant and $f(3)=10$. Which of the following is equal to the value of $f(5)$?
A) $f(0)$
B) $f(3)$
C) $f(-3)$
D) $f(-5)$

A certain job can be done in 20 hours by 4 people. How many people are needed to do the same job in 10 hours?
A) 2
B) 4
C) 8
D) 10

Which of the following is equivalent to $f(x)=x^{2}-6 x+7$?
A) $f(x)=(x+3)^{2}+5$
B) $f(x)=(x-3)^{2}+2$
C) $f(x)=(x-3)^{2}-2$
D) $f(x)=(x-7)(x+1)$

13

If $24 x^{2}-k x+16=(3 x+4)(a x-b)$ for all values of x, where a, b, and k are constants, what is the value of k ?
A) -44
B) -12
C) 12
D) 44

In the $x y$-plane, the equation of line ℓ is $x+3 y=5$. If line m is perpendicular to line ℓ, what is a possible equation of line m ?
A) $y=-\frac{1}{3} x+2$
B) $y=\frac{1}{3} x-1$
C) $y=-3 x+1$
D) $y=3 x+\frac{2}{3}$

If $a+b=8$ and $\frac{27^{a}}{3^{b}}=81$, what is the value of $a ?$
A) 3
B) 4
C) 5
D) 6

DIRECTIONS

For questions 16-20, solve the problem and enter your answer in the grid, as described below, on the answer shcet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles are filled in correctly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded
 grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or truncated, but it must fill the entire grid.

In a right triangle, one of the angles is x°. If $\tan x^{\circ}=\frac{5}{12}$, what is the value of $\sin x^{\circ}$?

17

Dawson needs to measure the height of a building near his house. He chooses a point P on the ground where he can visually align the roof of his car with the edge of the building roof. The height of the car is $\mathbf{4}$ feet and the distance from point P to point Q is 10 feet, as shown in the figure above. If the distance from point Q to point R is 80 feet, and the height of the building is k fect, what is the value of k ?

If $a(x+1)+b(x-1)=7 x$ for all real number x, where a and b are constants, what is the value of a ?

19

According to the formula $p=\frac{4}{3} k+81$, if the value of p is increased by 16 , by how much does the value of k increase?

20

$$
\begin{aligned}
& x^{2}+y^{2}=56 \\
& y=\sqrt{x}
\end{aligned}
$$

According to the system of equations above, what is the value of x ?

Math Test - Calculator

55 MINUTES, 38 QUESTIONS

Turn to Section 4 of your answer sheet to answer the questions in thls section.

DIRECTIONS

For questions 1-30, solve each problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 31-38, solve the problem and enter your answer in the grid on your answer sheet. Please refer to the directions before question 31 on how to enter your answers in the grid. You may use any available space in your test booklet for scratch work.

NOTE

1. The use of a calculator is permitted.
2. All variables and expressions used represent real numbers unless otherwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the domain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

REFERENC

$A=\pi r^{2}$
$A=\ell w$
$A=\frac{1}{2} b h$

$$
c^{2}=a^{2}+b^{2}
$$

Special Right Triangles
$C=2 \pi r$

$V=\pi r^{2} h$

$V=\frac{4}{3} \pi r^{3}$

$V=\frac{1}{3} \pi r^{2} h$

The number of degrees of arc in a circle is 360 .
The number of radians of are in a circle is 2π.
The number of the measures in degrees of the angles of a triangle is 180 .

x	$f(x)$
1	6
2	10
3	14
4	18
5	22

The selected values of a function shown in the table above represent a linear function. Which of the following equals $f(10)$?
A) 36
B) 40
C) 42
D) 44

2

If $3(a+2 b-c)=12$, what is the value of $a+2 b$ in terms of c ?
A) $3 c-4$
B) $c-12$
C) $c+4$

4

If $8^{n} \times 4^{2}=2^{10}$, what is the value of n ?
A) 2
B) 3
C) 4
D) 5

7

For what value of n is $|n+4|+1$ less than 0 ?
A) -5
B) -4
C) 3
D) Therc is no such value of n.

6

The equation of the graph of line ℓ in the $x y$-plane above is $y=m x+6$, where m is a constant. If the line passes through a point $(3,2)$, what is the value of m ?
A) $-\frac{4}{3}$
B) $-\frac{2}{3}$
C) $-\frac{1}{2}$
D) $-\frac{1}{4}$

In Ms. Lee's class, the number of boys is more than twice the number of girls. There are at least 7 girls and there are no more than 15 boys. How many students are in the class?
A) 19
B) 20
C) 21
D) 22

8

Test Score for a class of $\mathbf{2 0}$ Students

The graph above shows the test scores of 20 students. Based on the histogram above, what is the average (arithmetic mean) score on the test?
A) 70
B) 73
C) 75
D) 78

11

Questions 9 and 10 refer to the following

 information.$$
h(t)=-16 t^{2}+128 t+320
$$

A science class determined that the motion of a ball launched from the top of a 10 -story building could be described by the function above, where t represents the time the ball is in the air in seconds and h, the height in feet of the ball above the ground.

9

What is the number of seconds it takes for the ball to reach its peak?
A) 2
B) 4
C) 8
D) 10

10

At what time will the ball hit the ground?
A) 5
B) 8
C) 10
D) 12

12

$$
\begin{aligned}
& 3 x-y>0 \\
& 2 x+y>1
\end{aligned}
$$

Which of the following is NOT a solution of the system of inequalities above?
A) $(3,0)$
B) $(2,5)$
C) $(0,-3)$
D) $(5,-8)$

x	y
0	2
k	14
$k+2$	17

The table above shows the point (x, y) represented on a straight line. If the point $(16, m)$ lies on the same line, what is the value of m ?
A) 26
B) 24
C) 22
D) 20

14

James spent $\frac{3}{4}$ of his allowance on a music CD. He spent $\frac{2}{3}$ of what was left on a hamburger. If this left him P dollars, which of the following was his allowance in dollars?
A) $12 P$
B) $14 P$
C) $16 P$
D) $18 P$

Questions 15 and 16 refer to the following information.

Radioactive decay is an exponential function where the amount, y, of radioactive material is reduced by onehalf over a certain period of time t. Material M has a half- life of 50 years.

15

If there are 800 grams of radioactive material M , which of the following best represents the decay equation?
A) $y=800-400 t$
B) $y=800\left(\frac{1}{2}\right)^{t}$
C) $y=800\left(\frac{1}{2}\right)^{\frac{t}{50}}$
D) $y=800(1-0.5 t)$

16

If there are 800 grams of radioactive material M , then how much of this material would remain radioactive after 200 years?
A) 25 grams
B) 50 grams
C) 100 grams
D) 200 grams

Note: Figure not drawn to scale.

In the $x y$-plane above, the area of $\triangle O P Q$ is 3 . What is the value of k ?
A) 2
B) 4
C) 6
D) 8

18

A circle in the $x y$-plane with center $(4,0)$ passes through point $(7,4)$. Which of the following is the equation of the circle?
A) $(x-4)^{2}+y^{2}=9$
B) $(x-4)^{2}+y^{2}=25$
C) $(x-4)^{2}+y^{2}=5$
D) $(x+4)^{2}+y^{2}=5$

The graph of the function f is shown in the $x y$-plane above. Which of the following is the average rate of change between $x=-3$ and $x=6$?
A) $\frac{2}{9}$
B) $\frac{8}{9}$
C) 2
D) It cannot be determined from the given information.

Emily traveled 60 miles on the highway and 16 miles on the local roads to reach her destination. On the highway, she traveled 30 miles faster than on the local roads. If her speed on local roads is 20 miles per hour, then what was her average spced, in miles per hour, during her entire trip?
A) 24
B) 25
C) 35
D) 38

21

For O.K theater tickets, a ticket for an adult is 5 dollars more than a ticket for a child. If a group of 6 adults and 10 children pay a total of 142 dollars, what is the cost, in dollars, of a ticket for one adult and one child?
A) 19
B) 18
C) 17
D) 16

The scatterplot above shows the distance traveled in hours for 10 taxi drivers and the line of best fit for the data. Which of the following is closest to the average speed, in miles per hour, for the drivers?
A) 54
B) 59
C) 65
D) 68

23

For a polynomial $p(x)$, the value of $p(-5)=0$.
Which of the following must be true about $p(x)$?
A) $(x-5)$ is a factor of $p(x)$.
B) $(x+5)$ is a factor of $p(x)$.
C) x is a factor of $p(x)$.
D) When $p(x)$ is divided by $(x+5)$, the temainder is -5 .

24

$$
\begin{aligned}
& y \leq 3 x+\frac{1}{2} \\
& y \geq \frac{1}{2} x+3
\end{aligned}
$$

If the system of inequalities above is graphed in the $x y$-plane, which quadrant contains solutions to the system?
A) Quadrant I
B) Quadrant II
C) Quadrant III
D) Quadrant IV

The figure above shows the graph of the piece-wise function f defined for $-4 \leq x \leq 5$. For which of the following values of x is $f(x)<|f(x)|$?
A) -3
B) -1.3
C) 2.5
D) 3.7

26

If a and b are positive integers and $a^{2}-b^{2}=24$, which of the following could be the smallest value of a ?
A) 4
B) 5
C) 7
D) 8

The graph of $y=\frac{1}{3} x(x-6)$ is shown in the $x y$-plane above. Which of the following are the coordinates of vertex P ?
A) $(3,-2)$
B) $(2,-4)$
C) $(3,-3)$
D) $(3,-4.5)$

28

In right triangle $A B C$ above, if $B C=10$ and $\angle C=30^{\circ}$, what is the approximate perimeter of the triangle?
A) 20
B) 23.7
C) 25.8
D) 27.2

DIRECTIONS

For questions 31-38, solve the problem and enter your answer in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles are filled in correctly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded as 3.5 or $7 / 2$. (If $3|1| / 2 \mid$ is entered into the grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or truncated, but it must fill the entire grid.

Answer: 201
Either position is correct.

Note: You may start your answers in any column, space permitting. Columns you don't need to use should be left blank.

31

Kara needs three hours to mow and trim Mrs.
Tayler's lawn. One day she asked her friend Peter to work with her. When Peter worked with her, the job took only one hour. How long would it take Peter, in hours, to complete the job himself?

32

The County Reception Hall charges a rental fee of $\$ 1,000$ and at least $\$ 3,000$ for food. Olivia is planning a class reunion. If she has chosen a buffet that costs $\$ 38.56$ per person, what is the minimum possible number of people who must attend to support the expense?

The graph of a linear function f is shown in the $x y$-plane above. If $f(k)=\mathbf{l}$, what is the value of $f(-2 k)$?

34

If the average of $2 a$ and b is equal to 50 percent of $4 b$, what is the value of $\frac{a}{b}$?

Two cylinders shown above have the same volume. If the radius of cylinder II is twice the radius of cylinder I and the height of cylinder I is 10 , what is the height h of cylinder II?

$$
g(x)=\frac{x^{2}-3 x+2}{(x+2)^{2}-8 x}
$$

For what value of x is the function above undefined?

Questions 37 and 38 refer to the following information.

Suppose Claire deposits a principal amount of P dollars in a bank account that pays compound interest. If the annual interest is r (expressed as a decimal) and the bank makes interest payments n times every year, she would have an amount of money equal to R after t years, given by

$$
R(t)=P\left(1+\frac{r}{n}\right)^{n t}
$$

37

If she deposit $\$ 2,000$ into an account paying 4% annual interest compounded annually, what is the amount of interest after one year? (Disregard the \$ sign when gridding your answer.)

38

If she deposits $\$ 2,000$ into an account paying 4% annual interest compounded quarterly, what is her account balance after one year? (Round your answer to the nearcst dollar and disregard the $\$$ sign when gridding your answer.)

STOP

If you finish before time is called, you may check your work on this section only. Do not turn to any other section in the test.

Test 1 Answers and Explanations

$\begin{aligned} & \text { SECTION } \\ & \hline \end{aligned}$	1	2	3	4	5	64	7	8	9	10
	D	D	D	B	B	D	A	A	C	D
	11	12	13	14	+15	$\therefore 16$	17	18	19	20.6,
	C	C	A	D	A	- $\frac{5}{13}$	36	3.5	12	7
$\begin{gathered} \text { SECTION } \\ 4 \end{gathered}$	$\cdots 1$	2	3	4	5	6.	7	8.	9	10
	C	C	B	A	D	\wedge	D	B	B	C
	11	12	13	14	15 ,	-16.	17	118	19,	20
	A	C	A	A	C	B	A	B	A	D.
	21.	22.	23.	24	25.	26,	22.	28	29	30
	A	B	B	A	B	B	C	B	A	21/2 ${ }^{\text {F }}$
	31.	32	33	34	35.	36	37	38		
	1.5	52	7	3/2	2.5	2	80	2081		

Math Test - No Calculator

25 MINUTES, 20 QUESTIONS

Turn to Section 3 of your answer sheet to answer the questions in this section.

DIRECTIONS

For questions 1-15, solve each problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 16-20, solve the problem and enter your answer in the grid on your answer sheet. Please refer to the directions before question 16 on how to enter your answers in the grid. You may use any available space in your test booklet for scratch work.

NOTE

1. The use of a calculator is not permitted.
2. All variables and expressions used represent real numbers unless otherwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the domain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

REFERENC

$C=2 \pi r$
$A=\ell w$

$V=\ell w h$

$$
V=\pi r^{2} h
$$

$c^{2}=a^{2}+b^{2}$
Special Right Triangles

$V=\frac{1}{3} \pi r^{2} h$

The number of degrees of arc in a circle is 360 .
The number of radians of arc in a circle is 2π.
The number of the measures in degrees of the angles of a triangle is $\mathbf{1 8 0}$.

If $x-2 y=10, y=z+1$, and $z=2$, what is the value of x ?
A) 12
B) 14
C) 16
D) 18

2

$$
\begin{aligned}
& 2 x+6 y=5 \\
& a x+b y=7
\end{aligned}
$$

If the system of equations above has only one solution, which of the following could be the values of a and b ?
A) $a=1$ and $b=3$
B) $a=2$ and $b=6$
C) $a=3$ and $b=8$
D) $a=4$ and $b=12$

3

A smart phone company plans to produce and sell p smart phones. The cost of producing p phones is given by $265,000+150 p$ in dollars. The company receives $\$ 400$ on the sale of each phone, so the revenue for selling p phones is given by $400 p$. For what value of p is the revenue equal to the cost?
A) 500
B) 840
C) 1060
D) 1200

In the $x y$-plane above, line ℓ is perpendicular to line m. What is the value of k ?
A) -1
B) -2
C) -3
D) -4.5

7

If $4 a=2 b=c$, what is the average (arithmetic mean) of a, b, and c in terms of a ?
A) $\frac{4 a}{3}$
B) $2 a$
C) $\frac{7 a}{3}$
D) $3 a$

The figure above shows a regular hexagon. If the length of $\overline{A B}$ is 4 , what is the area of the hexagon?
A) 24
B) $24 \sqrt{3}$
C) 32
D) $32 \sqrt{3}$

In the $x y$-plane above, two graphs intersect at two points. What is the value of b ?
A) 1
B) 2
C) 3
D) 4

$$
\frac{1}{2}\left(\frac{1}{x-1}-\frac{1}{x+1}\right)
$$

Which of the following is equivalent to the expression abovc?
A) $\frac{1}{2}\left(\frac{1}{x^{2}-1}\right)$
B) $\frac{1}{x^{2}-1}$
C) $\frac{-2}{x^{2}-1}$
D) $\frac{-2 x}{x^{2}-1}$

11

The surface area S of a cylinder with radius r and height h is $S=2 \pi r^{2}+2 \pi r h$. If the surface area of the cylinder is 20π and the height is 3 , what is the value of r ?
A) 1
B) 2
C) 4
D) 5

$$
R=\frac{\left(m_{1}+m_{2}\right)}{m_{1}}
$$

The ratio for the kinetic energy between two objects of mass m_{1} and m_{2} before and after the collision is given above. Which of the following is equivalent to the expression for m_{1} ?
A) $\frac{m_{2}}{R}$
B) $\frac{R-1}{m_{2}}$
C) $\frac{m_{2}}{R-1}$
D) $\frac{m_{2}-R}{R}$

13

$$
f(x)=x^{2}+a x-10
$$

If $f(2)=0$ in the quadratic function above, which of the following must be true?
A) $f(-5)=0$
B) $f(-2)=0$
C) $f(-1)=0$
D) $f(0)=0$

14

15

$$
2 a+(4 a+2) i=b-10 i
$$

If $i=\sqrt{-1}$ in the equation above, where a and b are constants, what is the value of b ?
A) 6
B) 4
C) -3
D) -6

Esposito tried to compute the average of his 10 math scores. He mistakenly divided the correct total S of his scores by 8 . The result was 5 more than what it should have been. Which of the following would determine the value of S ?
A) $10 S=7 S+5$
B) $\frac{S}{10}=\frac{S}{8}+5$
C) $\frac{S}{8}-\frac{S}{10}=5$
D) $\frac{S+5}{10}=\frac{S}{8}$

DIRECTIONS

For questions 16-20, solve the problem and enter your answer in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles are filled in correctly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded as 3.5 or $7 / 2$. (If $\frac{3 / 2 / 2}{1}$ is entered into the grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be cither rounded or truncated, but it must fill the entire grid.

If the slope of line m in the $x y$-plane above is $\frac{1}{3}$, what is the area of quadrilateral $O E C D$?

17

Claire and Peter both want to buy new smart phones. Claire has already saved 100 dollars and plans to save 5 dollars per week until she can buy the phone. Peter has 25 dollars and plans to save 8 dollars per week. ln how many weeks will Claire and Peter have saved the same amount of money?

In the figure above, O is the center of the circle with radius r, and the measure of θ is $\frac{\pi}{5}$ radians. If the length of minor arc $A B$ is 3π, what is the value of r ?

20

In a certain class of 70 students, $\frac{4}{7}$ of the students are boys, and the ratio of students 10 years or older to students less than 10 years is $2: 3$. If $\frac{2}{3}$ of the girls are less than 10 years old, how many boys are 10 years old or older?

STOP

If you finish before time is called, you may check your work on this section only. Do not turn to any other section in the test.

Math Test - Calculator

55 MINUTES, 38 QUESTIONS

Turn to Section 4 of your answer sheet to answer the questions in this section.

DIRECTIONS

For questions 1-30, solve each problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 31-38, solve the problem and enter your answer in the grid on your answer sheet. Please refer to the directions before question 31 on how to enter your answers in the grid. You may use any available space in your test booklet for scratch work.

NOTE

1. The use of a calculator is permitted.
2. All variables and expressions used represent real numbers unless otherwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the domain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

REFERENCE

$A=\pi r^{2}$
$C=2 \pi r$

$$
A=\ell w
$$

$A=\frac{1}{2} b h$

$$
A=\frac{1}{2} b h
$$

Special Right Triangles

$$
c^{2}=a^{2}+b^{2}
$$

$$
V=\frac{1}{3} \pi r^{2} h
$$

$$
V^{\ell}=\frac{1}{3} \ell w h
$$

The number of degrees of arc in a circle is 360 .
The number of radians of arc in a circle is 2π.
The number of the measures in degrees of the angles of a triangle is 180 .

1

During its Labor Day sale, a store advertises that $\$ 40$ will be deducted from every purchase over $\$ 200$. In addition, after the deduction is taken, the store offers an early-bird discount of 40% to any person who makes a purchase before $9 \mathrm{a} . \mathrm{m}$. If Claire makes a purchase of k dollars, $k>200$, at $8 \mathrm{a} . \mathrm{m}$., which of the following expressions represents the cost of her purchase?
A) $0.4 k-16$
B) $0.4 k-24$
C) $0.6 k-24$
D) $0.6 k-40$

2

On a map, 3 centimeters represents k kilometers.
How many kilometers are represented by p centimeters?
A) $3 p k$
B) $\frac{k}{3 p}$
C) $\frac{3 k}{p}$
D) $\frac{p k}{3}$

3

In the figure above, lines ℓ and m are parallel.
If the measure of $\angle 1$ is 20° more than the measure of $\angle 2$, what is the measure of $\angle 1$?
A) 35°
B) 45°
C) 55°
D) 75°

4

$$
T=150+20 w
$$

Cassy plans to buy a new computer, and plans to save $\$ 20$ each week for the next w weeks. The total amount of money she saved is represented by the equation above, where T is the total amount. Which of the following is the best interpretation of the number 150 in the equation?
A) The new computer costs $\$ 150$.
B) She saved $\$ 150$ each week.
C) She wants to buy a computer when she saves $\$ 150$.
D) She has already saved $\$ 150$ toward the cost of a new computer.

Questions 5 and 6 refer to the following information.

Dog age(D)	0	2	4	6	8	\cdots	15
Human age (H)	a	10	20	30	40	\cdots	b

The chart above shows equivalent ages for dogs and humans. Human age is directly proportional to dog age.

5

What is the value of $a+b$?
A) 60
B) 75
C) 80
D) 85

6

Which of the following graphs best represents the relationship between dog and human ages?
A)

B)

C)

D)

In the fraction $\frac{a-5}{2 b}, a$ is 5 less than two times b. If the fraction is equal to $\frac{1}{2}$, what is the value of a ?
A) 15
B) 20
C) 25
D) 30

8

Tyler spent 60 dollars at an amusement park for admission and rides. If he paid $\$ 10$ for admission, and rides cost $\$ 3$ each, what is the maximum number of rides that he went on?
A) 16
B) 17
C) 18
D) 20

9

For a school summer concert, one type of ticket costs $\$ 5$ and another costs $\$ 10$. The supervisor of the concert can sell at most 500 tickets, but the gross receipts must total at least $\$ 3,000$ in order for the concert to be held. Which of the following systems of inequalities could represent this relationship?
A) $\left\{\begin{array}{l}5 x+10 y \geq 3000 \\ x+y \leq 500 \\ x \geq 0 \\ y \geq 0\end{array}\right.$
В) $\left\{\begin{array}{l}\frac{5}{x}+\frac{10}{y} \leq 500 \\ x+y \leq 3000 \\ x \geq 0 \\ y \geq 0\end{array}\right.$
C) $\left\{\begin{array}{l}5 x+10 y \leq 3000 \\ x+y \leq 500 \\ x \geq 0 \\ y \geq 0\end{array}\right.$
D) $\left\{\begin{array}{l}5 x+10 y>3000 \\ x+y<500 \\ x>0 \\ y>0\end{array}\right.$

10

If a linear function f satisfics $f(3)=10$ and $f(7)=18$, what is the value of $f(5)$?
A) 12
B) 14
C) 15
D) 16

Questions 11 and 12 refer to the following information.

A rancher has 100 feet of fencing to enclose rectangular region as shown above. The length and width are represented by x and y respectively.

11

Which of the following expressions represents the area of the rectangular region as a function of x ?
A) $100 x-x^{2}$
B) $50 x-x^{2}$
C) $50 x+x^{2}$
D) $50 x^{2}$

12

If the value of y is 25 , what is the area of the rectangular region in square feet?
A) 325
B) 625
C) 1250
D) 2500

13

Factory Workers over 60		
Year	Percent of Men	Percent of Women
1990	19.6	13.5
2000	23.6	10.8

The table above shows the percent of men and women 60 years and older who were working in a certain factory in the U.S. in the given ycars. If the rate of increase or decrease every year is constant, which of the following represents the percent of men over 60 who were working in the factory in the year 2015?
A) 26.6
B) 27.2
C) 29.6
D) 30.5

14

Mary is making a rectangle whose perimeter is less than 100 inches. If the dimensions of the rectangle are integers, what is the largest possible arca for the rectangle in square inches?
A) 600
B) 625
C) 650
D) 800

15

4

If $z=3+2 i$ is in the first quadrant of the complex number plane above, then which quadrant contains z^{2} ?
A) Quadrant I
B) Quadrant II
C) Quadrant III
D) Quadrant IV

16

In the figure above, $A D=\sqrt{3}$ and $C D=1$. What is the length of $\overline{A B}$?
A) 2
B) 3
C) $2 \sqrt{3}$
D) $3 \sqrt{3}$

19

Questions 17 and 18 refer to the following information.

The number of bacteria in a controlled laboratory environment is defined by the function $f(x)=1000 \times b^{x}$, where x is the time in hours. The graph of f is shown in the $x y$-plane below.

17

What is the value of b ?
A) 1
B) 2
C) 3
D) 4

18

What is the number of bacteria in 5 hours?
A) 27,000
B) 32,000
C) 40,000
D) 64,000

The graph of line ℓ is shown in the $x y$-plane above. Line m (not shown) has the equation $y=a x+b$, where a and b are constants. If line m is perpendicular to line ℓ and passes through point P, what is the value of b ?
A) 0
B) -1
C) -2
D) -3

22

$$
2^{3 k-3}=64
$$

In the equation above, what is the value of 2^{k} ?
A) 4
B) 8
C) 16
D) 32

The complete graph of the function f is shown in the $x y$-plane above. Which of following is true?
A) $f(0)>|f(0)|$
B) $f(2.2)<|f(2.2)|$
C) $f(3)>|f(3)|$
D) $f(-2)<|f(-2)|$

$$
\begin{aligned}
& y=-\frac{1}{10} x^{2}+k \\
& y=5
\end{aligned}
$$

In the system of equations above, k is a constant. For which of the following values of k does the system of equations have no real solution?
A) 10
B) 8.5
C) 5
D) -0.05

In the figure above, E and F are the mid points of two sides of a rectangle. If the area of $\triangle C E F$ is 10 , what is the area of the shaded region?
A) 15
B) 20
C) 25
D) 30

26

$$
\begin{aligned}
& x-y=5 \\
& x y=10
\end{aligned}
$$

In the equations above, what is the value of $x^{2}+y^{2}$?
A) 15
B) 25
C) 36
D) 45

27

In the $x y$-plane above, the figure shows the coordinates of points A, B, and C of a parallelogram. Which of the following are the coordinates of point C ?
A) $(3,5)$
B) $(4,6)$
C) $(5,5)$
D) $(6,5)$

28

$$
\begin{aligned}
& a^{2}+b^{2} \leq 25 \\
& b \geq 3
\end{aligned}
$$

In the inequalities above, what is the greatest possible value of a ?
A) -4
B) -3
C) 3
D) 4

The figure above shows a square and an equilateral triangle. If the area of the triangle is $25 \sqrt{3}$ square inches, what is the arca, in square inches, of the squarc?
A) $50 \sqrt{3}$
B) 100
C) $100 \sqrt{3}$
D) 125

29

The graph above compares the distance with the number of hours that a car traveled. Which of the following is the average speed, in miles per hour, of the car during the time between 3 and 7 hours?
A) 50
B) 55
C) 60
D) It cannot be determined from the given information.

4

DIRECTIONS

For questions 31-38, solve the problem and enter your answer in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles are filled in correctly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded as 3.5 or $7 / 2$. (If $3|1|{ }^{2}$ a is entered into the grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or truncated, but it must fill the entire grid.

Acceptable ways to grid $\frac{2}{3}$ are:

Answer: 201
Either position is correct.

Note: You may start your answers in any column, space permitting. Columns you don't need to use should be left blank.

31

Jackie goes on a 30 -mile bike ride every Sunday. He rides the distance in 3 hours. At this rate, how many miles can he ride in 5 hour and 30 minutes?

32

The average of a set of 8 consecutive odd integers is
18. What is the greatest of these 8 integcrs?

33

The graphs of a linear function f and a quadratic function g are shown in the $x y$-plane above. If $f(g(k))=-3$, what is the value of $|k|$?

34

In the $x y$-plane, line $x=2$ is the axis of symmetry of the graph of $f(x)=5 x^{2}-k x+2$. What is the value of k ?

Twenty grams of solution P is 10% alcohol and 30 grams of solution Q is 20% alcohol by mass. If these fwo solutions are mixed together, what is the percent of alcohol in the mixture? (Disregard the \% sign when gridding your answer.)

36

In the figure above, a circle is inscribed in $\triangle P Q R$. If $P Q=3$ and $P R=4$, what is the radius of the circle?

Qucstions 37 and 38 refer to the following information.

The total cost of an internet phone-call is the sum of
(1) a basic fixed charge for using the intemet and
(2) an additional charge for each minute that is used.

The total cost of a 20 minute-call is $\$ 24$ and the total cost of a 35 minute-call is $\$ 31.50$.
(Disregard the $\$$ sign when gridding your answer.)

37

What is the basic fixed charge, in dollars, for using the internet?

What is the total cost, in dollars, of a 40 minute-call?

Test 2 Answers and Explanations

$\begin{gathered} \text { SECTION } \\ \mathbf{3} \end{gathered}$	18	2	3	4	-5\%	6	7	88	9	10
	C	C	C	A	D	D	C	B	D	B
	11	12	13 \%	14	151	16 \%	17,	18	19	20
	B	C	A	D	C	84	25	11	15	18
SECTION 4	1	2	3	4	5	6	7	8	9	10
	C	D	C	D	B	B	A	A	A	B
	11.	12	+13	14	15	16.	17	18	19	20
	B	B	C	A	A	C	B	B	D	C
	21.	22	. 23	24	45	26	27.	8	29	30
	D	B	B	D	D	D	B	D	B	$4 k / 215^{\mathrm{C}}$
	31	32.	33	34	35	16	37	-38		
	55	25	1	20	16	1	14	34		

$43 / 215$

Math Test - No Calculator

25 MINUTES, 20 QUESTIONS

Turn to Section 3 of your answer sheet to answer the questions in this section.

DIRECTION

For questions 1-15, solve each problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 16-20, solve the problem and enter your answer in the grid on your answer sheet. Please refer to the directions before question 16 on how to enter your answers in the grid. You may use any available space in your test booklet for scratch work.

NOTE

1. The use of a calculator is not permitted.
2. All variables and expressions used represent real numbers unless otherwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the domain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

REFERENC

$A=\pi r^{2}$
$V=\ell w h$

$$
C=2 \pi r
$$

$A=\ell w$

The number of degrees of arc in a circle is 360 .
The number of radians of arc in a circle is 2π. The number of the measures in degrees of the angles of a triangle is $\mathbf{1 8 0}$.

A total of 40 students in Mr. Lee's class voted for their favorite subject. The results are shown in the pie chart above. How many students voted for math?
A) 12
B) 14
C) 16
D) 18

2

If $3 r+5=10$, what is the value of $6 r+5$?
A) 10
B) 15
C) 20
D) 21

If $a^{-2}=\frac{1}{5}$, what is the value of $5 a^{2}$?
A) 1
B) 5
C) 10
D) 25

4

When a certain number p is divided by 10 , the quotient is k and the remainder is r. Which of the following expressions represents r ?
A) $r=p-10 k$
B) $r=10 p-k$
C) $r=10(k-p)$
D) $r=10 k-p$

If $\frac{5}{12}=\frac{1}{a}+\frac{1}{b}$ and $a b=24$, what is the value of $a+b$?
A) 25
B) 13
C) 11
D) 10

6

The graph of function f is shown in the $x y$-plane above. If length of $\overline{M A}$ of the rectangle $M A T H$ is 5 , what is the length of $\overline{A T}$?
A) 2
B) 2.5
C) 3
D) 4

Two rectangles are shown in the figure above. If $A B=4, A D=2$, and $B C=8$, what is the area of the shaded region?
A) 32
B) 36
C) 48
D) 64

8

$$
\begin{aligned}
& a x-b y=9 \\
& 3 x+y=3
\end{aligned}
$$

If the system of linear equations above has infinitely many solutions, what is the value of $a+b$?
A) -3
B) 6
C) 9
D) 12

$$
y=k(x-4)(x+2)
$$

The graph of the quadratic equation above, where k is a constant, has a vertex at point (a, b) in the $x y$-plane. Which of the following is equal to a ?
A) -1
B) 0
C) 1
D) 2

12

The figure $P Q R$ in the $x y$-plane is an isosceles right triangle. Which of the following is equal to k ?
A) 6
B) 7
C) 8
D) 9

$$
\frac{2 i}{1-i}=a+b i
$$

If $i=\sqrt{-1}$ in the equation above, where a and b are constants, what is the value of a ?
A) -1
B) 1
C) 2
D) 3

14

$$
\frac{1}{x}=\frac{x}{2 x+1}
$$

What are the solutions to the equation above?
A) $x=-1 \pm \sqrt{2}$
B) $x=1 \pm \sqrt{2}$
C) $x=1 \pm \sqrt{3}$
D) $x=\frac{\mathrm{I} \pm \sqrt{2}}{2}$

15

$$
P=\frac{9}{2} K+40
$$

The equation above shows how the value of P relates to the value of K. Based on the equation, which of the following must be true?
I. When the value of K increases by 1 , the value of P increases by 40 .
II. When the value of K increases by 2 , the value of P increases by 9 .
III. When the value of K increases by 4 , the value of P increases by 18 .
A) I and II only
B) I and Ш only
C) II and III only
D) I, II, and III

DIRECTIONS

For questions 16-20, solve the problem and enter your answer in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles are filled in correctly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded
 grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or truncated, but it must fill the entire grid.

Acceptable ways to grid $\frac{2}{3}$ are:

Answer. 201

Either position is correct.

Note: You may start your answers in any column, space permitting. Columns you don't need to use should be left blank.

3

$$
x^{2}-a x=-10
$$

The quadratic equation above has two real solutions. If one of the solutions is 5 and a is a constant, what is the other solution?

17

$$
\frac{15}{x-1}-7=3-\frac{5}{x-1}
$$

If $x>1$, what is the solution to the cquation above?

18

In the figure above, line ℓ is parallel to line m. What is the value of b ?

At a certain party, an executive committee provided onc soda for 8 pcople, one large bag of chips for 4 people, and one cheese cake for 6 people. If the total number of sodas, large bag of chips, and cheese cakes was 78 , how many people were at the party?

The figure above shows trapezoid $A B C D$. If M is the midpoint of $\overline{A D}$ and $A D=3 \cdot B C$, what fraction of the area of the trapezoid is shaded?

14

Math Test - Calculator

55 MINUTES, 38 QUESTIONS

Turn to Section 4 of your answer sheet to answer the questions in this section.

DIRECTIONS

For questions 1-30, solve each problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 31-38, solve the problem and enter your answer in the grid on your answer sheet. Please refer to the directions before question 31 on how to enter your answers in the grid. You may use any available space in your test booklet for scratch work.

NOTE

1. The use of a calculator is permitted.
2. All variables and expressions used represent real numbers unless otherwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the domain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

REFERENCE

$A=\pi r^{2}$
$C=2 \pi r$
$A=\ell w$
$A=\frac{1}{2} b h$

$$
c^{2}=a^{2}+b^{2}
$$

Special Right Triangles

$V=\ell w h$

$V=\pi r^{2} h$

$$
V=\frac{4}{3} \pi r^{3}
$$

$V=\frac{1}{3} \pi r^{2} h$

$V=\frac{1}{3} \ell w h$
The number of degrees of arc in a circle is 360 .
The number of radians of are in a circle is 2π.
The number of the measures in degrees of the angles of a triangle is 180 .

1

Bernard began to ride a bicycle to the town library, and then rode to the book store to buy a novel. After 10 minutes, he began to ride home again. If the graph above shows his trip, how long did he stay in the library?
A) 10 minutes
B) 20 minutes
C) 30 minutes
D) 40 minutes

2

If $\frac{2}{k}=9$ and $9 k+h=20$, what is the value or h ?
A) 9.5
B) 12
C) 15.5
D) 18

3

n	-1	0	1	2	a
$f(n)$	0	3	6	9	b

The table above shows some values of the linear function f. Which of the following defines b ?
A) $b=a+3$
B) $b=a+5$
C) $b=2 a+4$
D) $b=3 a+3$

4

	Subject		Total
Gender	Art	Music	
Males	30		65
Females		20	
Total			100

The incomplete table above shows the results of a survey about subject preference given to 100 students. What is the probability of art students being females?
A) $\frac{7}{25}$
B) $\frac{1}{3}$
C) $\frac{1}{4}$
D) $\frac{2}{5}$

$$
L=0.2(t-2010)+10
$$

The lifespan of a certain bird has been tracked from the year 2010, and the average lifespan is modeled by the equation above. In 2010 the lifespan of the bird was 10 years. What is the meaning of the number 0.2 in the equation?
A) The lifespan in the year 2010
B) The life span increase each year from 2010
C) The lifespan increase every 10 year
D) The life span decrease each year from 2010

8

$$
x^{2}-2 x+y^{2}+2 y-3=0
$$

The equation of a circle in the $x y$-plane is shown above. What is the diameter of the circle?
A) $\sqrt{5}$
B) $2 \sqrt{5}$
C) 5
D) 10

Which of the following is the greatest change in scores between test $\mathbf{1}$ and test 2?
A) 60
B) 50
C) 40
D) 30

9

$$
\begin{aligned}
& x-4 y=-3 \\
& 4 x-y=12
\end{aligned}
$$

In the system of equations above, what is the value of $x+y$?
A) 5
B) 6
C) 8
D) 9

10

$$
\left(a^{k}\right)^{\frac{2}{3}}=\frac{1}{a^{2}}
$$

In the equation above, if $a>0$, what is the valuc of k ?
A) -3
B) -1
C) 1
D) 3

11

Jackson wants to measure the length $A B$ of a lake. In the figure above, $\overline{A B}$ is parallel to $\overline{C D}$, $D E=6$ feet, $C D=10$ feet, and $B E=300$ feet. What is the length of the lake?
A) 250 feet
B) 275 feet
C) 375 feet
D) 500 feet

12

$$
2 x^{2} y-3 x y^{2}-x y(3 x+5 y-2)
$$

Which of the following is equivalent to the expression above?
A) $x y(x-8 y-2)$
B) $x y(x+8 y-2)$
C) $-x y(x-8 y+2)$
D) $-x y(x+8 y-2)$ \because

In the figure above, point O is the center of the circle. If the length of $\overline{T P}$ is $10 \sqrt{3}$, what is the length of minor arc $\overparen{T M}$?
A) $\frac{5 \pi}{3}$
B) $\frac{7 \pi}{3}$
C) $\frac{8 \pi}{3}$
D) $\frac{10 \pi}{3}$

14

A certain number is proportional to another number in the ratio $3: 7$. If 12 is subtracted from the sum of the numbers, the result is 38 . What is the average (arithmetic mean) of the numbers?
A) 10
B) 12
C) 25
D) 40

15

The function f, defined by $f(x)=m x-m$, is graphed in the $x y$-plane above. Which of the following expressions represents the area of triangle OPR?
A) $\frac{m}{2}$
B) m
C) $\frac{m^{2}}{2}$
D) m^{2}

16

If pipe S can fill a certain water tank in 3 hours and pipe U can empty it in 4 hours, how long, in hours, would it take to fill the empty tank when both pipes are open?
A) 6
B) 8
C) 10
D) 12

17

$$
\frac{1}{R}+\frac{1}{S}=\frac{1}{T}
$$

When electrical circuits are connected in parallel, the reciprocal of the total resistance is found by adding the reciprocals of each resistance as shown above. Which of the following gives S in terms of R and T ?
A) $S=\frac{R-T}{R T}$
B) $S=\frac{T-R}{R T}$
C) $S=\frac{R T}{R-T}$
D) $S=\frac{R T}{T-R}$

18

$$
h(t)=36 t-6 t^{2}
$$

The function h above shows the height, in feet, of an object thrown upward after t seconds. How long, in seconds, does the object stay in the air higher than 48 feet?
A) 2
B) 3
C) 4
D) 5

Questions 19 and 20 refer to the following information.

Two health clubs offer different membership plans.
The graph above shows the yearly cost, including a membership fee plus a monthly charge, for each club.

19

Which of the following is closest to the monthly charge, in dollars, for club B ?
A) 42
B) 67
C) 70
D) 72

20

Which of the following best approximates the total cost, in dollars, for club B when both plans are the same?
A) 510
B) 525
C) 533
D) 550

$$
\begin{aligned}
& y=a(x-2)^{2}+b \\
& y=5
\end{aligned}
$$

In the system of equations above, for which of the following values of a and b does the system have no solution?
A) $a=1$ and $b=-4$
B) $a=2$ and $b=5$
C) $a=-1$ and $b=6$
D) $a=-2$ and $b=4$

22

$$
D(t)=30-a t^{2}
$$

An apple falls from the branch of a tree to the ground 30 feet below. The distance, D, the apple is from the ground is represented by the equation above, where a is a constant and t is time in seconds.
If $D(0.1)-D(0.2)=6$, what is the value of a ?
A) 160
B) 180
C) 200
D) 240

The graph above shows the daily high temperatures in Albany, New York, for 6 days in January. Which of the following describes the data?
I. mean $=$ median
II. mean = mode
III. median $=$ mode
A) 1 and II only
B) II and III only
C) Ш only
D) I, II, and III

24

Note: Figure not drawn to scale.
In the figure above, if $\sin \left(a^{\circ}\right)=\cos \left(b^{\circ}\right)$, which of the following must be true?
A) $a=b$
B) $a>b$
C) $a=60$
D) $c=90$

25

In an art class, $\frac{2}{3}$ of the students are girls and $\frac{2}{5}$ of girls are seniors. If $\frac{1}{3}$ of senior girls have passed the final att test, which of the following could be the number of students in this class?
A) 20
B) 30
C) 45
D) 60

26

The figure above shows a silo built from a right circular cone and a right circular cylinder. If the volume of the cylinder is 1911 cubic feet, what is the volume of the silo, in cubic feet?
A) 2125
B) 2548
C) 2684
D) 3017

27

$$
k=x^{2}-5 x
$$

In the equation above, for how many integers x is the number k negative?
A) 2
B) 3
C) 4
D) 5

28

In figure above, two identical rectangles lie inside a square and the dimensions of the rectangle are a and b respectively. If the distance from the rectangles to the square and each other are 4 inches, and $a: b=5: 2$. What is the area of the square in square inches?
A) 625
B) 676
C) 729
D) 784

In the figure above, $A D=D E=E C$. If the area of triangle $A B C$ is 81 , what is the arca of the shaded region?

$$
a-b+3 i \sqrt{5}=\sqrt{5}+(a+b) i
$$

In the equation above, a and b are constants. If $i=\sqrt{-1}$, what is the value of $a^{2}-b^{2}$?
A) $8 \sqrt{3}$
B) 12
C) 15
D) $12 \sqrt{3}$
A) 24
B) 27
C) 30
D) 40.5

DIRECTIONS

For questions 31-38, solve the problem and enter your answer in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles are filled in correctly.

2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded as 3.5 or $7 / 2$. (If $\left.3\left|\frac{1}{6}\right|\right|^{2}$ is entered into the grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or truncated, but it must fill the entire grid.

Acceptable ways to grid $\frac{2}{3}$ arc:

Answer: 201
Either position is correct.

Note: You may start your answers in any column, space permitting. Columns you don't need to use should be left blank.

4

31

x	$f(x)$
1	7
3	13
5	19
a	b

x	$g(x)$
0	12
1	14
2	16
a	b

The tables above show some values of the linear functions f and g. What is the value of $a+b$?

32

In the $x y$-plane above, what is the area of rectangle $A B C D$?

$$
\begin{aligned}
& f(x)=x^{2}+a x+b \\
& g(x)=f(x-3)
\end{aligned}
$$

In the functions above, a and b are constants. If $g(3)=5$ and $g(4)=10$, what is the value of a ?

35

In the figure above, central angle $A O B$ has a
measure of $\frac{\pi}{3}$ radians. If the length of minor arc $\overparen{A B}$ is 10 , what is the area of the shaded sector?
(Round your answer to the nearest tenth.)

36

$$
P(x)=x^{2}+4 x-k
$$

In the quadratic function above, if $P(0)=5$, what is the minimum valuc of P ?

Questions 5 and 6 refer to the following

 information.$$
\begin{aligned}
& R=100 x \\
& C=85 x+2000
\end{aligned}
$$

A smartphone production company expressed a relationship between revenue (R) and $\operatorname{cost}(C)$ for selling x units of a product as shown above.

For what value of x will the product start to retum a profit?

38

For what value of x, will the company achieve a profit of $\$ 100,000$?

STOP

If you finish before time is called, you may check your work on this section only. Do not turn to any other section in the test.

Test 3 Answers and Explanations

$\begin{array}{\|c\|c\|} \text { Section } \\ \mathbf{3} \end{array}$	1 I	2	3	4.	5.	6	4,	8	9	10
	C	B	D	A	D	D	A	B	B	A
	11	12	13.	14	15 \%	16	17	18.	19	20.
	C	A	A	B	C	2	3	130	144	1/4
$\begin{gathered} \text { SECTION } \\ \mathbf{4} \end{gathered}$	1.	2	3	4	5	6	, 4	8 \%	9	10
	D	D	D	B	C	B	B	B	A	A
	1	12	13	14.	15	16.	11.	- 8 ,	19	20.
	C	D	D	C	A	D	C	A	A	C
	21	22	23	24.	, 25	, \%6,	\%2	28	29,	1, 30,
	D	C	C	D	C	B	C	D	B	\$3/215
	31	32^{2}	33.	34	$1{ }^{2}$, 38	37	, 38 ,		
	36	15	128	4	47.7	1	134	6800		

Math Test - No Calculator

25 MINUTES, 20 QUESTIONS

Turn to Section 3 of your answer sheet to answer the questions in this section.

DIRECTIONS

For questions 1-15, solve each problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 16-20, solve the problem and enter your answer in the grid on your answer sheet. Please refer to the directions before question 16 on how to enter your answers in the grid. You may use any available space in your test booklet for scratch work.

NOTE

1. The use of a calculator is not permitted.
2. All variables and expressions used represent real numbers unless otherwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the domain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

REFERENC

$A=\pi r^{2}$
$C=2 \pi r$

$V=\ell w h$

$A=\ell w$

The number of degrees of arc in a circle is 360 .
The number of radians of arc in a circle is 2π.
The number of the measures in degrees of the angles of a triangle is 180 .

1

Which of the following expressions cannot be equal to 0 for some value of x ?
A) $x^{2}-2$
B) $x^{2}+1$
C) $1-x^{2}$
D) $2-x^{2}$

2

$$
f(x)=m x+b
$$

In the function above, m and b are constants.
If $\frac{f(5)-f(2)}{3}=2$, what is the values of m ?
A) 2
B) 3
C) 4
D) 5

3

The line passing through the points ($a, 3$) and $(b,-2)$ is paraltel to the graph of $y=\frac{1}{2} x-10$.
What is the value of $a-b$?
A) 5
B) 7
C) 8
D) 10

4

$$
\begin{aligned}
& y=m x-\frac{2}{5} \\
& 2 x+3 y=4
\end{aligned}
$$

In the system of equations, a is a constant. If the system has no solution, what is the value of m ?
A) $-\frac{2}{3}$
B) $-\frac{3}{2}$
C) $\frac{2}{3}$
D) $\frac{3}{2}$

If $f(x)=(x-1)^{2}-(x-1)-1$, which of the following expressions is equal to $f(1-x)$?
A) $f(1-x)=(x+1)^{2}-(x+1)-1$
B) $f(1-x)=(1-x)^{2}-(1-x)-1$
C) $f(1-x)=x^{2}-x-1$
D) $f(1-x)=x^{2}+x-1$

6

The graph of a function $f(x)$ is shown in the $x y$-plane above. What is the area of triangle $A B C$?
A) 16
B) 32
C) 64
D) 128

If $\frac{a-2 b}{b}=\frac{2}{3}$, which of the following is equal to $\frac{a}{b} ?$
A) $\frac{2}{3}$
B) $\frac{4}{3}$
C) $\frac{5}{3}$
D) $\frac{8}{3}$

8

$$
\begin{aligned}
& y=m \sqrt{x} \\
& y=m x-k
\end{aligned}
$$

In the system of equations, m and k are constants. If $(4,16)$ is a solution to the system of equations above, what is the value of k ?
A) 4
B) 8
C) 12
D) 16

The graphs of f and rectangle MATH are shown in the $x y$-plane above. If $M A=25$, what is the length of $\overline{A T}$?
A) 5
B) 10
C) 15
D) 20

10

Which of the following equations has no solution?
A) $10 x-5 x=3$
B) $7 x=9 x-2 x+10$
C) $10 x-6=8 x+2 x-6$
D) $10 x-6=5 x+4 x-1$

$$
f(x)=k(x+4)(x-10)
$$

In the quadratic function f above, k is a constant. The graph of the function in the $x y$-plane is a parabola with vertex (a, b). If $b=-7$, which of the following is equal to k ?
A) $\frac{1}{49}$
B) $\frac{1}{7}$
C) 7
D) 49

12

Note: Figure not drawn to scale.
In the figure above, if line ℓ and m are parallel, which of the following must be true?
A) $a+b+c=180$
B) $d+e=b$
C) $b+e=c$
D) $a+b=180$

$$
\frac{5 x^{2}+k x+1}{x-1}=a x+1+\frac{2}{x-1}
$$

The equation above is true for all values of x except 1 , where k and a are constants. What is the value of k ?
A) -4
B) -2
C) 2
D) 4

14

Grade	For	Against	Total
Junior	60		
Senior			
Total	130		300

A supervisor surveyed students in his school to see if they were for or against building a fast-food restaurant in the school. The incomplete table above shows the results of his survey. If 40% of juniors are against it, how many seniors are in the school?
A) 100
B) 120
C) 170
D) 200

What are the solutions to $4(x-2)^{2}-1=5$?
A) $x=2 \pm \frac{\sqrt{6}}{4}$
B) $x=2 \pm \frac{\sqrt{6}}{2}$
C) $x=\sqrt{2} \pm \frac{\sqrt{6}}{2}$
D) $x=2 \pm \sqrt{6}$

DIRECTIONS

For questions 16-20, solve the problem and enter your answer in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles are filled in correctly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded as 3.5 or $7 / 2$. (If $41 /{ }^{3} / 2$ is entered into the grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or truncated, but it must fill the entire grid.
4-1020 -

Acceptable ways to grid $\frac{2}{3}$ are:

Answer: 201
Either position is correct.

Note: You may start your answers in any column, space permitting. Columns you don't need to use should be left blank.

In the triangle above, the value of $\cos x^{\circ}$ is 0.8 . If
the length of $\overline{A C}$ is 20 , what is the length of $\overline{B D}$?

17

$$
2 x^{3}-10 x^{2}+5 x-25=0
$$

For what real value of x is the equation above true?

Note: Figure not drawn to scale.
In the figure above, $A B=9, C D=3$, and $A C=12$.
What is the length of $\overline{P Q}$?

Question 19 and 20 refer to the following information.

A T-Mobile telephone company offers domestic texting plans as follows.

Plan A	Plan B
$\$ 0.25$ per domestic text with no plan	Any 200 domestic texts for $\$ 10$ per month with an aditional cost of $\$ 0.15$ per text over 200.

19

For what number of texts do the two plans cost the same per month?

20

If Angela uses 400 texts per month, how much money, in dollars, will she save per month by using the less expensive plan? (Disregard the \$ sign when gridding your answer.)

Math Test - Calculator

55 MINUTES, 38 QUESTIONS

Turn to Section 4 of your answer sheet to answer the questions in this section.

DIRECTIONS

For questions 1-30, solve each problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 31-38, solve the problem and enter your answer in the grid on your answer sheet. Pleasc refer to the directions before question 31 on how to enter your answers in the grid. You may use any available space in your test booklet for scratch work.

NOTE

1. The use of a calculator is permitted.
2. All variables and expressions used represent real numbers unless otherwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the domain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

REFERENCE

$$
\begin{array}{ll}
A=\pi r^{2} \\
C=2 \pi r
\end{array} \quad A=\ell w
$$

Special Right Triangles

$V-\ell w h$

$V=\frac{4}{3} \pi r^{3}$

$$
V=\frac{1}{3} \pi r^{2} h
$$

The number of degrees of arc in a circle is 360 .
The number of radians of arc in a circle is 2π.
The number of the measures in degrees of the angles of a triangle is 180 .

At a local video store, Angel rented two movies and three games for a total of $\$ 20$. The next day, she rented three movies and 2 games for a total of $\$ 15$. How much money, in dollars, is needed to rent a combination of one movie and one game?
A) 7
B) 10
C) 12
D) 16

The circle graph above shows the percent of which 200 students are taking each subject. How many more students are taking Algebra than Geometry?
A) 30
B) 34
C) 36
D) 38

\section*{2}

x	-1	0	1	2
$f(x)$	a	5	k	b

The table above shows some values of a linear
function f. If $b-a=9$, what is the value of k ?
A) 7
B) 8
C) 9
D) 12

4

Gender	For	Against	Total
Boys	35		
Girls		23	55
Total			100

Ted surveyed a random sample of 100 students in his high school to see if they were for or against purchasing an additional grand piano for the school music concert. The incomplete table above shows the results of his survey. Based on this information, about how many of the 800 students in the school would be expected to be against the purchasing the piano?
A) 200
B) 264
C) 320
D) 350

Note: Figure not drawn to scale.
In the $x y$-plane above, line ℓ is parallel to line m. What is the value of b ?
A) $-\frac{7}{3}$
B) -14
C) -21
D) -28
A) 2
B) 5
C) 10
D) 12

6

By what percent does the average height increase from age 1 to age 7 ?
A) 60
B) 50
C) 40
D) 30

If $f(x-5)=3 x-10$ for all values of x, what is the value of $f(-2)$?
A) -16
B) -10
C) -5
D) -1

10

Lee's family starts a trip with a supply of 20 pounds of coffee. When they arrive at their destination, 8 days later, they have found only 4 pounds left. They consume coffee at a constant rate per day. If T is amount of coffee remaining as a function of days d, which of the following represents the function $T(d)$?
A) $T(d)=8 d$
B) $T(d)=2 d+20$
C) $T(d)=20-8 d$
D) $T(d)=20-2 d$

$$
8 x+y=300
$$

The elevator in a trade center is moving down from a height of 300 feet. The equation above can be used to model the height of the elevator, y, above the lobby, where x is the time in seconds. If the ordered pair (x, y) satisfies the equation, what does $(37.5,0)$ mean?
A) The clevator stops at a height of 37.5 feet.
B) The elevator is moving down at a constant speed of 37.5 feet per second.
C) The elevator moves 37.5 feet from the lobby.
D) The elevator takes 37.5 seconds to move down to the lobby.

12

Thompson invested $\$ 10,000$ in stocks for two years. During the first'year he suffered a 30 percent loss, but during the second year the remaining investment showed a 30 percent gain. Over the two-year period, how did Thompson's investment change?
A) His investment did not change.
B) His investment increased by 10 percent.
C) His investment decreased by 10 percent.
D) His investment decreased by 9 percent.

13

The graph of $a x+b y=5$ in the $x y$-plane contains points from each of Quadrants I, II, and III, but no points from Quadrant IV. Which of the following must be true?
A) $a>0$ and $b>0$
B) $a>0$ and $b<0$
C) $a<0$ and $b>0$
D) $a<0$ and $b<0$

14

A water tank is built from two right circular cones with a radius 5 feet. If the volume of the tank is 200π cubic feet, what is the length h, in feet, from the bottom to the top of the tank?
A) 6
B) 12
C) 18
D) 24

15

Note: Figure not drawn to scale.
The function f, defined by $f(x)=-x^{2}+6 x$ is graphed in the $x y$-plane above. An isosceles triangle $O P Q$ with $O P=P Q$ is built on the x-axis. What is the area of the triangle?
A) 13.5
B) 27
C) 40.5
D) 54

16

Cathy can do a job in 8 hours while Danny can do the same job in 6 hours. If Cathy and Danny work together for three hours, what fraction of the job is left to be finished?
A) $\frac{1}{12}$
B) $\frac{1}{8}$
C) $\frac{1}{6}$
D) $\frac{1}{4}$

17

In a plane, the distance between points X and Y is 10 , the distance between points X and P is 3 , and the distance between points Y and Q is 4 . Which of the following CANNOT be the length of $\overline{P Q}$?
A) 2
B) 3
C) 15
D) 17

18

The town library is planning to order student desks for the next school year. The costs to purchase student desks are as follows.

Two desks for $\$ 50$, four desks for $\$ 80$, six desks for $\$ 110$, eight desks for $\$ 140$, and so on.

If the town library wants to purchase 200 student desks, what would be the total cost in dollars?
A) 5000
B) 3020
C) 2860
D) 2500

Questions 19 and 20 refer to the following information.

The cross-section view of a river in Los Angeles is modeled by the graph above. The equation represented by the graph is defined by $D(x)=k(x-10)(x-50)$, where k is a constant.

19

Based on the graph above, how wide is the river in meters?
A) 20
B) 25
C) 40
D) 60

20

Based on the equation above, what is the value of k ?
A) 8
B) 4
C) $\frac{1}{4}$
D) $\frac{1}{8}$

21

In the right triangle $A B C$ above, the length of $\overline{B C}$ is 20. If the value of $\sin \left(a^{\circ}\right)$ is 0.35 , what is the length of $\overline{B D}$?
A) 5
B) 7
C) 8
D) 10

22

Which of the following polynomials has a factor of $x-1$?
A) $p(x)=x^{3}+x^{2}-2 x+1$
B) $q(x)=2 x^{3}-x^{2}+x-1$
C) $r(x)=3 x^{3}-x-2$
D) $s(x)=-3 x^{3}+3 x+1$

A decorating consultant charges consultation costs based on the graph above. If the consultant works for x hours ($x>2$), for the consultation, which of the following represents the total cost?
A) $C(x)=300$
B) $C(x)=300+100 x$
C) $C(x)=300+\frac{200}{7} x$
D) $C(x)=300+\frac{200}{7}(x-2)$

24

$$
|x|=k
$$

If the equation above has a real solution set, which of the following must be true?
I. $k \geq 0$
II. $k<0$
III. $x>0$
A) I only
B) II only
C) I and II only
D) II and III only

In the sector above, segment $A O$ is a radius. If the length of arc $\overparen{A B C}$ is 12 , what is the area of the sector?
A) $\mathbf{4 8} \pi$
B) 16π
C) $\frac{64}{\pi}$
D) $\frac{48}{\pi}$

26

$$
(k-1) x+3 k=a x+24
$$

If the equation above is true for all real values of x, where k and a are constants, what is the value of a ?
A) 1
B) 5
C) 7
D) 8

$$
\begin{aligned}
& y=f(x) \\
& y=k
\end{aligned}
$$

The function f is graphed in the $x y$-plane above. If the system of equations above has exactly three real solutions for $-5 \leq x \leq 15$, which of the following could be the value of k ?
A) 10
B) 5
C) -5
D) -8

28

In the figure above, two circles have a common center O, and two rays from the center intercept the circles at points P, Q, R, and S. The measure of angle $P O Q$ is $\frac{2 \pi}{5}$ and the area of the shaded region of sector $O P Q$ is 20π. If $O P: P R=2: 3$, what is the length of minor arc $\widehat{R S}$?
A) 5π
B) 10π
C) 15π
D) 20π

DIRECTIONS

For questions 31-38, solve the problem and enter your answer in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles are filled in correctly.

2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded as 3.5 or $7 / 2$. (If $|3| \frac{1}{0}\left|/\left.\right|^{2}\right|$ is entered into the grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or truncated, but it must fill the entire grid.

Acceptable ways to grid $\frac{2}{3}$ are:

Answer: 201
Either position is correct.

Note: You may start your answers in any column, space permitting. Columns you don't need to use should be left blank.

$$
g(x)=2 f(x)-1
$$

In the equation above, if $g(1)=3$, what is the value of $f(1)$?

32

For all values of a and b, let $a \nabla b$ be defined by $a \nabla b=a b-a+1$. If $k \nabla(k-2)=2 \nabla 3$, what is the positive value of k ?

33

35

$$
P(x)=23,500-250 x
$$

The population of a certain town has been declining since the year 2,000 . Scientists chose a linear decay model for the decline and arrived at the function above, where x is the number of years since 2,000 . In how many years, will the population be decreased by 2,000 ?

The length of a side of equilateral triangle $A B C$ above is 10 . In the figure, $\overline{E D} \| \overline{B C}$ and $\overline{D F} \| \overline{A B}$. If the ratio of $D E$ to $D F$ is $1: 3$, what is the perimeter of triangle $C D F$?

37

$$
3 x^{2}-8 x+4=0
$$

If a and b are two solutions of the equation above, what is the value of $\frac{1}{a}+\frac{1}{b}$?

38

The $x y$-plane above shows two points of intersection of the graphs of a linear function and a quadratic function. The vertex of the graph of the quadratic function is at $(3,-4)$ and (r, s) is one of points of intersection of the graphs. What is the value of r ?

STOP

If you finish before time is called, you may check your work on this section only.
Do not turn to any other section in the test.

Test 4 Answers and Explanations

$\begin{gathered} \text { SECTION } \\ 3 \end{gathered}$	T 1	2	3	\% 4	5	6	7	8	9	+10
	B	A	D	A	D	C	D	D	B	B
	1	12	, 13	14.	15	16	17.	18	19	20 .
	B	B	A	B	D	9.6	5	2.25	160	30
$\begin{gathered} \text { SECTION } \\ 4 \end{gathered}$	1	2	3	4	5	6.	4,	8	9, 9	10
	A	D	D	B	Λ	B	C	D	D	D
	(-1,	12,	13, ${ }^{\text {a }}$	14. ${ }^{2}$	$1, \quad 18$	10	, 1,	140,4	- ${ }^{19}$	20
	D	D	C	D	B	B	A	B	C	D
	12\%		, 24,	Y41	25	26	1.			30
	B	C	D	A	D	C	C	D	C	B
	31	324	33	34	354	36	$1,16 x=$			
	2	4	9/4	50	8	22.5	2	9/4		

$S A T$
 Test \#5

Math Test - No Calculator

25 MINUTES, 20 QUESTIONS

Turn to Section 3 of your answer sheet to answer the questions in this section.

DIRECTIONS

For questions 1-15, solve each problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 16-20, solve the problem and enter your answer in the grid on your answer sheet. Please refer to the directions before question 16 on how to enter your answers in the grid. You may use any available space in your test booklet for scratch work.

NOTE

1. The use of a calculator is not permitted.
2. All variables and expressions used represent real numbers unless otherwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the domain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

REFERENC

$A=\pi r^{2}$
$C=2 \pi r$
$V=\ell w h$

$A=\ell w$

$V=\pi r^{2} h$

$c^{2}=a^{2}+b^{2}$
$A=\frac{1}{2} b h$

Special Right Triangles

The number of degrees of arc in a circle is 360 .
The number of radians of are in a circle is 2π.
The number of the measures in degrees of the angles of a triangle is 180.

If $4 r-35=4 s+13$, what is the value of $r-s$?
A) 9
B) $\mathbf{1 0}$
C) 12
D) 16

$$
\left(x-\frac{1}{x}\right)^{2}+4
$$

Which of the following is equivalent to the expression shown above?
A) $x^{2}-\frac{1}{x^{2}}+4$
B) $x^{2}+\frac{1}{x^{2}}+4$
C) $\left(x+\frac{1}{x}\right)^{2}$
D) $\left(x+\frac{1}{x}\right)^{2}-4$

2

$$
\begin{aligned}
& x^{2}-y^{2}=35 \\
& x+y=5
\end{aligned}
$$

In the system of equations above, which of the following is the value of x ?
A) 5
B) 6
C) 7
D) 8

4

Note: Figure not drawn to scale.

In the triangle above, $a=3 x+20$ and $b=x-10$. If $\cos a^{\circ}=\sin b^{\circ}$, what is the value of x ?
A) 20
B) 25
C) 28
D) 30

5

In the triangle above, the length of $\overline{A B}$ is 20 . What is the area of triangle $A B C$?
A) $50 \sqrt{3}$
B) $25 \sqrt{3}$
C) $\frac{25 \sqrt{3}}{2}$
D) $\frac{25 \sqrt{3}}{2}$

6

$$
\sqrt{-6} \cdot \sqrt{-24}
$$

If $i=\sqrt{-1}$, which of the following is equivalent to the expression shown above?
A) 12
B) -12
C) $12 i$
D) $-12 i$

Questions 7 and 8 refer to the following information.

$$
P(t)=b+a t
$$

Jessie purchased a micro oven for $\$ 750$. After 10 years, the value of the oven will be $\$ 0$. The value P of the oven during year t is modeled by the equation above, where a and b are constants.

7

Based on the information above, what is the value of a ?
A) 75
B) 50
C) -10
D) -75

8

In how many years will the value of the micro oven be decreased by $\$ 180$?
A) 2.4
B) 4
C) 4.5
D) 5

$$
P=\frac{A-d}{B+d}
$$

A tire repair center uses the formula above to calculate the pressure of tire, where d is the diameter of the tire. Which of the following expresses d in terms of the other variables?
A) $d=\frac{P-P B}{A-1}$
B) $d=\frac{A-P}{B-1}$
C) $d=\frac{A-P B}{P+1}$
D) $d=\frac{A-1}{P-B}$

10

In the cube above, the length of diagonal $\overline{P Q}$ is $\mathbf{1 2}$. What is the surface area of the cube?
A) 27
B) 64
C) 150
D) 288

On a car trip Adam drove 50 miles more than half the number of miles Benjamin drove. If together they drove 500 miles, how many miles did Adam drive?
A) 200
B) 250
C) 300
D) 350

Plan	Monthly Fee	Cost/Minute
A	$\$ 25$	$\$ 0.20$
B	$\$ 40$	$\$ 0.08$

A cellular phone company offers two different phone plans shown in the table above. What is the number of minutes when the total cost is the same for both plans?
A) 80
B) 95
C) 100
D) 125

13

$$
\begin{aligned}
& \frac{10 x+5}{x-1}
\end{aligned}
$$

Which of the following is equivalent to the expression above?
A) -15
B) $\frac{5}{x-1}-10$
C) $\frac{5}{x-1}+10$
D) $\frac{15}{x-1}+10$

14

A tiger is 500 feet from its prey. It starts to sprint toward its prey at 88 feet per second. At the same time, the prey starts to sprint in the same direction at p feet per second. The tiger catches its prey in 20 seconds. The graphs shown above represent this relationship. Based on the graphs, what is the value of p ?
A) 50
B) 63
C) 70
D) 72

15

$$
P(x)=(x-2) Q(x)+R
$$

The equation above shows when $P(x)$ is divided by ($x-2$), the remainder is R, where $Q(x)$ is the quotient. If $P(x)=5 x^{2}-3 x+4$, what is the value of R ?
A) 4
B) 6
C) 12
D) 18

DIRECTIONS

For questions 16-20, solve the problem and enter your answer in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles are filled in correctly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded as 3.5 or $7 / 2$. (If $3|1| / 2$ is entered into the grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or truncated, but it must fill the entire grid.

Acceptable ways to grid $\frac{2}{3}$ are:

Answer: 201
Either position is correct.

Note: You may start your answers in any column, space permitting. Columns you don't need to use should be left blank.

3

19

$$
R^{2}-S^{2}=19
$$

In the equation above, if R and S are positive integers, what is the value of R ?

17

In reading group A with 90 students, there are 4 boys for every 5 girls. In the other reading group, B, there are 3 boys for every 2 girls. If these two groups are combined, the ratio of boys to girls will be 10:9. How many students are in the reading group B ?

18

$$
(a-1) x^{2}+(b-2) x+c=0
$$

In the equation above, a, b, and c are constants. If the equation is true for all values of x, what is the value of $a+b+c$?

$$
\begin{aligned}
& 3 x+p y=12 \\
& r x+5 y=6
\end{aligned}
$$

In the system of equations above, p and r are constants. If the system has infinitely many solutions, what is the value of $\frac{p}{r}$?

20

In the figure above, D and E are the midpoints of $\overrightarrow{A B}$ and $\overrightarrow{B C}$ respectively. If the area of the shaded region is 42 , what is the area of triangle $A B C$?

STOP

If you finish before time is called, you may check your work on this section only. Do not turn to any other section in the test.

Math Test - Calculator

55 MINUTES, 38 QUESTIONS

Turn to Section 4 of your answer sheet to answer the questions in this section.

DIRECTIONS

For questions 1-30, solve cach problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 31-38, solve the problem and enter your answer in the grid on your answer sheet. Please refer to the directions before question 31 on how to enter your answers in the grid. You may use any available space in your test booklet for scratch work.

NOTE

1. The use of a calculator is permitted.
2. All variables and expressions used represent real numbers unless otherwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the domain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

REFERENCE

$A=\pi r^{2}$
$C=2 \pi r$

$A=\ell w$

$V=\ell w h$

$V=\pi r^{2} h$

$A=\frac{1}{2} b h$

$c^{2}=a^{2}+b^{2}$

$$
V=\frac{4}{3} \pi r^{3}
$$

Special Right Triangles

$V=\frac{1}{3} \pi r^{2} h$ 360.

The number of radians of are in a circle is 2π.
The number of the measures in degrees of the angles of a triangle is 180 .
94/215

A local telephone company charges $\$ 30$ for the first 400 texts with additional texts over 400 costing $\$ 0.08$ per text. If Jessie uses n texts, $n>400$, which of the following expressions represents her total cost in dollars?
A) $0.08 n+30$
B) $0.08 n+30(400)$
C) $0.08(n-400)+30$
D) $0.08(n-400)+30(400)$

Robert earms P dollars in 4 days. At this rate how many days will it take him to earn S dollars?
A) $4 S$
B) $\frac{4 P}{S}$
C) $\frac{S}{4 P}$
D) $\frac{4 S}{P}$

If $f(x-5)=5 x-14$, which of the following is the value of $f(2)$?
A) -4
B) -3
C) 15
D) 21
4 as

Gender	Seniors	Juniors	Total
Boys	15		22
Girls		23	
Total	45		

A certain reading group consists of only senior and junior students. The incomplete table above shows the number of students. How many students are in the reading group?
A) 68
B) 75
C) 79
D) 85

Questions 5 and 6 refer to the following information.

The length of a spring varies directly as the amount of weight attached to it. When a weight of 10 grams is attached, the spring is stretched to 25 centimeters.

5

Which of the following is the equation that relates the weight W and the length L of the spring?
A) $L=15 \mathrm{~W}$
B) $L=0.8 \mathrm{~W}$
C) $L=2.5 \mathrm{~W}$
D) $L=2.5 W+25$

6

What is the number of grams that stretches a spring 33 centimeters?
A) 12.8
B) 13.2
C) 15
D) 18

7

$$
p(x)=20 x-k
$$

The profit p, in dollars, from a car wash is given by the function above, where x is the number of cars washed and k is a constant. When 40 cars were washed today, the profit was $\$ 500$. If the owner wants to make a profit of at least $\$ 650$, how many more cars should be washed?
A) 7
B) 8
C) 23
D) 25

8

If $4^{a+b}=8$ and $9^{a-b}=81$, what is the value of $a^{2}-b^{2}$?
A) 3
B) 8
C) 12
D) 15

If $f(x-2)=3 x-5$ for all values of x, which of the following is the expression for $f(x)$?
A) $f(x)=3 x-1$
B) $f(x)=3 x+1$
C) $f(x)=3 x+2$
D) $f(x)=3 x+3$

10

In the $x y$-plane above, line ℓ is perpendicular to line m. Which of the following points lies on linc ℓ ?
A) $(1,2)$
B) $(3,4)$
C) $(5,7)$
D) $(6,9)$

$$
5 a+b+4 i=(a-2 b)+k i
$$

In the equation above, a, b, and k are constants. If $i=\sqrt{-1}$, what is the value of $\frac{a}{b}$?
A) $\frac{4}{3}$
B) $\frac{3}{4}$
C) $-\frac{3}{4}$
D) $-\frac{4}{3}$

12

$$
v(t)=490-9.8 t
$$

A bullet is shot up into the air from ground level. The equation above shows the velocity, v, of the bullet, in meters per second, after t seconds. According to the model, what is the meaning of the 9.8 in the equation?
A) For every increase of 1 second, the velocity increases by 9.8 meters per second.
B) For every increase of 1 second, the velocity decreases by 9.8 meters per second.
C) For every decrease of 1 second, the velocity decreases by 9.8 meters per second.
D) For every decrease of 9.8 second, the velocity increases by 490 meters per second.

13

$$
a x+b y=5
$$

In the equation above, a and b are non-zero constants. If $a+b=0$, which of the following must be true about the graph in the $x y$-plane?
A) The slope of the graph is negative.
B) The slope of the graph is positive.
C) The slope of the graph is zero.
D) The slope of the graph is undefined.

14

Claire first walked one third of the way from home to her friend's house for a birthday party. For the rest of the way to her friend's house, she ran 4 times as fast as she walked. If she took 14 minutes to walk one third of the way, how many minutes did it take her to get from home to her friend's house?
A) 21
B) 24
C) 28
D) 35

15

$$
\begin{gathered}
\frac{1}{8} x-\frac{1}{4} y=1 \\
\frac{1}{10} x+\frac{1}{5} y=2
\end{gathered}
$$

In the system of equations above, point (a, b) is the solution of the system. What is the value of $a+b$?
A) 10
B) 13
C) 17
D) 20

The $x y$-plane shows graphs of a linear function and a quadratic function, where a is a constant. If (r, s) is the point of intersection, what is the value of r ?
A) 6
B) 6.5
C) 7
D) 7.5

17

In the $x y$-plane above, the shaded region represents the solution set of a system of inequalities. Which of the following could be the system of inequalities?
A) $\left\{\begin{array}{l}4 x-5 y-10 \geq 0 \\ y \geq x^{2}-6 x+5\end{array}\right.$
B) $\left\{\begin{array}{l}4 x-5 y-10>0 \\ y \geq x^{2}+6 x+5\end{array}\right.$
C) $\left\{\begin{array}{l}4 x-5 y-10>0 \\ y \geq x^{2}-6 x+5\end{array}\right.$
D) $\left\{\begin{array}{l}4 x+5 y-10>0 \\ y \geq x^{2}-6 x+5\end{array}\right.$

$$
\frac{x-1}{3}=k x+2
$$

In the equation above, k is a constant. If the equation has no solution, what is the value of k ?
A) $\frac{1}{3}$
B) $\frac{1}{2}$
C) 2
D) 3

19

```
Q, %,
```


The figure above shows two squares and a circle. If the length of $\overline{P S}$ is a, what is the area of the shaded region?
A) $\frac{a^{2}(\pi-2)}{4}$
B) $\frac{a^{2}(\pi-4)}{4}$
C) $\frac{\pi a^{2}}{4}-4$
D) $\pi a^{2}-8$

$$
a x+b y-2=0
$$

In the function above, a and b are constants. If the graph of the function has a negative slope and a negative y-intercept, which of the following is true?
A) $a=0$
B) $a>0$
C) $a<0$
D) $a \geq 0$

21

$$
R=\frac{f(b)-f(a)}{b-a}
$$

The average rate of change, R, of function f between a and b is defined by the equation above.
If $f(2)=5$ and $f(5)=-3$, what is the value of R ?
A) $-\frac{8}{3}$
B) $-\frac{3}{8}$
C) $\frac{3}{8}$
D) $\frac{8}{3}$

22

In the $x y$-plane above, $M A T H$ is a rhombus and line ℓ passes through points A and H. Which of the following is the equation of line ℓ ?
A) $y=-\frac{3}{5} x+6$
B) $y=-\frac{5}{3} x+6$
C) $y=-\frac{3}{5} x+\frac{36}{5}$
D) $y=-\frac{3}{5} x+\frac{42}{5}$

23

$$
\begin{aligned}
& x^{2}+y^{2}-2 x-2 y=7 \\
& y=k
\end{aligned}
$$

In the system of equation above, k is a constant. For which of the following values of k does the system of equations have exactly two real solutions?
A) $k=6$
B) $k=5$
C) $k=4$
D) $k=3$

In the right triangle $A B C$ above, $A C=10$ and the value of $\sin A$ is 0.4 . What is the length of $\overline{D C}$?
A) 1.6
B) 2.4
C) 2.5
D) 2.8

25

Note: Figure not drawn to scale.
The circle shown in the $x y$-plane above has a center at $(3,0)$. Which of the following are the coordinates of point R ?
A) $(-14,0)$
В) $(-10,0)$
C) $(-8,0)$
D) $(-6,0)$

26

$$
(a+b) x^{2}+(a-2 b) x+k=(k-1) x^{2}+5 x+3
$$

In the equation above, a, b, and k are constants. If the equation is true for all real values of x, what is the value of a ?
A) 2
B) 3
C) 5
D) 8

27

In the figure above, $\overline{O P}$ and $\overline{O S}$ of sector $O S P$ are radii and the length of $\overline{A C}$ of rectangle $A B C O$ is 10. If the measure of angle $A C O$ is 60°, which of the following is closest to the area of the shaded region?
A) 30
B) 32
C) 35
D) 40

Questions 28 and 29 refer to the following information.

$$
h=v_{0} t-\frac{1}{2} g t^{2}+40
$$

A rocket is launched from a height of 40 meters with an initial speed of 196 meters per second. The equation above describes the height h and the initial speed v_{0} of the rocket, where t is the time elapsed since the rocket is launched and g is the acceleration due to gravity ($9.8 \mathrm{~m} / \mathrm{s}^{2}$).

28

How long will it take for the rocket to reach its maximum height in seconds?
A) 15
B) 20
C) 25
D) 30

29

What is the maximum height, in meters, of the rocket from the ground?
A) 1200
B) 1600
C) 2000
D) 2400

In the $x y$-plane above, the area of triangle $P R S$ is 10 . What is the value of k ?
A) 4
B) 5
C) 6
D) 7

DIRECTIONS

For questions 31-38, solve the problem and enter your answer in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles arc filled in correctly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded as 3.5 or $7 / 2$. (If $3\left|\frac{1}{6}\right|^{2}$ is entered into the
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or truncated, but it must fill the entire grid.

$$
\text { grid, it will be interpreted as } \frac{31}{2} \text {, not } 3 \frac{1}{2} \text {.) }
$$

Answer: 201
Either position is correct

Note: You may start your answers in any column, space pcrmitting. Columns you don't need to use should be left blank.

31

Note: Figure not drawn to scale.
The function $y=x(8-x)$ is graphed in the $x y$-plane above. The length of $\overline{A B}$ of isosceles triangle $A B C$ is 4 and $\overline{A B}$ is parallel to the x-axis. What is the area of the triangle?

32

The magnitude of a complex number is the length of a vector from the origin to the terminal point. What is the magnitude of 3-4i?

For how many ordered pairs of positive integers (x, y) is $4 x+5 y<15 ?$

34

In the figure above, $\overline{D E}\|\overline{F G}\| \overline{A C}$ and $A F=F D=D B$. If the area of $A F G C$ is 20 , what is the area of the shaded region?

Note: Figure not drawn to scale.
The $x y$-plane above shows the graphs of two quadratic functions and a rectangle. Points A, B, C, and D lie on the graphs of $y=x^{2}$ and $y=-x^{2}$ respectively. If the area of rectangle $A B C D$ is 108 , what is the length of $\overline{B C}$?

36

\qquad

$$
\begin{aligned}
5 s-2 t-1 & =-a \\
-8 s+b t-2 & =2
\end{aligned}
$$

In the system of equations above, a and b are constants. If the system has infinitely many solutions, what is the value of a ?

37

In the figure above, circle O is tangent to the sides of triangle $A B C$. If $A B=10$ and $B C=6$, what is the circumference of the circle to the nearest tenth?

38

$$
f(x)=3 x^{3}-8 x^{2}+5 x-k
$$

In the polynomial function above, k is a constant. If $(x-2)$ is a factor of $f(x)$, what is the value of k ?

Test 5 Answers and Explanations

$\begin{gathered} \text { SECTION } \\ 3 \end{gathered}$	1	2	3 \%	$4{ }^{4}$	5	6 6,	\% 7	\| 81	9	16
	C	B	C	A	A	B	D	A	C	D
	11.	12	13	44	15	16	17	18	14	20.
	A	D	D	B	D	10	100	3	20/3	56
$\begin{gathered} \text { SECTION } \\ 4 \end{gathered}$	1.	2	3.	4	+5,	6 6	W\%	\%91	, 9	40\%
	C	D	D	B	C	B	B	A	B	D
	E1.	\% 12	13	\|,	5	"	11, 业	里	19.	2U
	C	B	B	A	C	A	C	A	A	B
	$2{ }^{2} 4$	+	+						64.	
	A	D	D	A	A	B	C	B	C	106/2 ${ }^{\text {P }}$
			18	$\sqrt{4}$	43×1	Noxdy				
	24	5	3	12	6	7/2	12.6	2		

Test \#6

Math Test - No Calculator

25 MINUTES, 20 QUESTIONS

Turn to Section 3 of your answer sheet to answer the questions in this section.

DIRECTIONS

For questions 1-15, solve each problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 16-20, solve the problem and enter your answer in the grid on your answer sheet. Please refer to the directions before question 16 on how to enter your answers in the grid. You may use any available space in your test booklet for scratch work.

NOTE

1. The use of a calculator is not permitted.
2. All variables and expressions used represent real numbers unless otherwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the domain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

REFERENCE

$A=\pi r^{2}$
$C=2 \pi r$

$A=\ell w$

$c^{2}=a^{2}+b^{2}$
Special Right Triangles

$Y=\frac{1}{3} \pi r^{2} h$
$V=\frac{1}{3} \ell w h$
The number of degrees of are in a circle is 360 .
The number of radians of arc in a circle is 2π.
The number of the measures in degrees of the angles of a triangle is 180 .

If $10 x-5=a$, what is the value of $2 x-1$?
A) $\frac{a}{5}-1$
B) $\frac{a}{5}$
C) $\frac{a}{5}+1$
D) $\frac{a}{5}+5$

2

Claire is trying to get in shape for a town summer walking tour. She starts her exercise by walking on the treadmill for 20 minutes on the first day. She adds 5 minutes each day before the tour. At this rate how many minutes will she be walking on the treadmill on the 20 th day?
A) 80
B) 100
C) 115
D) 120

$$
|a-1|<3
$$

In the absolute value inequality above, how many integers a satisfy the inequality?
A) 2
B) 3
C) 4
D) 5

4

The graph of the line ℓ is shown in the $x y$-plane above. Which of the following could represent the graph of line ℓ ?
A) $x-y+2=0$
B) $x+y-2=0$
C) $x+y+2=0$
D) $x-y-2=0$

The complete graph of the function f is shown above. Which of the following are equal to 2 ?
I. $f(-2)$
II. $|f(\mathbf{1})|$
III. $f(4.7)$
A) I only
B) I and III only
C) II and III only
D) I, II, and III

6

$$
\left(\sqrt[3]{x^{15}}\right)\left(\sqrt[2]{x^{8}}\right)
$$

If x is positive, which of the following is equivalent to the expression above?
A) $\sqrt[6]{x^{23}}$
B) $\sqrt[5]{x^{23}}$
C) x^{20}
D) x^{9}

Questions 7 and 8 refer to the following information.

	Juniors	Seniors	Total
Physics	80		180
Statistics		100	
Total			300

The partially completed table gives the enrollment for Physics and Statistics at Jade High School. Only juniors and seniors take these classes.

7

According to the table, what is the number of juniors who take Statistics?
A) 20
B) 40
C) 60
D) 80

8

What percent of jumiors is taking Statistics?
A) 6.7
B) 10
C) 20
D) 25

Which of the following data sets appears to have the smallest standard deviation?
A)
B)

C)
D)

10

$$
\sqrt{x+10}=x-2
$$

What is the solution set for the equation above?
A) $\{-1\}$
B) $\{6\}$
C) $\{-1,6\}$
D) No solution

$$
x^{2}-4 x+5=(x-1)(x-2)+a x+b
$$

In the equation above, a and b are constants. If the equation is true for all values of x, what are the values of a and b ?
A) $a=-3, b=-1$
B) $a=3, b=-1$
C) $a=-1, b=3$
D) $a=3, b=1$

12

$$
x^{4}-\frac{1}{81}
$$

Which of the following is equivalent to the expression above?
A) $\left(x^{2}-\frac{1}{9}\right)^{2}$
B) $\left(x-\frac{1}{3}\right)^{4}$
C) $\left(x^{2}+x+\frac{1}{9}\right)^{2}$
D) $\left(x^{2}+\frac{1}{9}\right)\left(x+\frac{1}{3}\right)\left(x-\frac{1}{3}\right)$

$$
4\left(x^{2}-5 x\right)=16
$$

What is the sum of the solutions of the equation above?
A) 5
B) 10
C) $10+\sqrt{41}$
D) $10-\sqrt{41}$

15

Based on the information above, if a student works 20 hours, approximately how much will he be paid for the work?
A) 200
B) 300
C) 350
D) 500

DIRECTIONS

For questions 16-20, solve the problem and enter your answer in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles are filled in correctly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.

4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded as 3.5 or $7 / 2$. (If $3 \left\lvert\, \frac{1}{1 / / 4 / 2}\right.$ is entered into the grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or truncated, but it must fill the entire grid.

Answer: 201
Either position is correct.

Note: You may start your answers in any column, space permitting. Columns you don't need to use should be left blank.

16

The function $f(x)=x^{4}-6 x^{2}-4$ is graphed in the $x y$-plane as shown above. If the equation $y=-3$ is graphed in the plane, how many points of intersection with the function f are there?

17

$$
\begin{aligned}
& f(x)=g(x)-k \\
& g(x)=\sqrt{3 x-2}
\end{aligned}
$$

In the system of equations above, k is a constant. If $f(2)=-3$, what is the value of k ?

A water pipe is in the shape of a circular tube. The figure above shows the pipe with a portion cut out. The dimensions of the pipe above are height 10 inches with thickness 4 inches. If the volume of the figure above is 800π cubic inches, what is the radius r of the inner circle in inches?

$$
f(x)=g^{2}(x)-7 g(x)+15
$$

In the equation above, if $f(2)=3$, what is one possible value of $g(2)$?

Figure not drawn to scale.
The graph of $y=x^{2}-8 x+16$ is shown in the $x y$-plane above. If point P is the y-intercept of the graph, what is the area of rectangle $O P Q R$?

STOP

If you finish before time is called, you may check your work on this section only.

Math Test - Calculator

55 MINUTES, 38 QUESTIONS

Turn to Section 4 of your answer sheet to answer the questions in this section.

DIRECTIONS

For questions 1-30, solve each problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 31-38, solve the problem and enter your answer in the grid on your answer sheet. Please refer to the directions before question 31 on how to enter your answers in the grid. You may use any available space in your test booklet for scratch work.

NOTE

1. The use of a calculator is permitted.
2. All variables and expressions used represent real numbers unless otherwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the domain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

REFERENCE

$A=\pi r^{2}$
$C=2 \pi r$
$A=\ell w$

$$
V=\ell w h
$$

$$
V=\pi r^{2} h
$$

$c^{2}=a^{2}+b^{2}$

$$
V=\frac{4}{3} \pi r^{3}
$$

Special Right Triangles

$V=\frac{1}{3} \pi r^{2} h$
$V=\frac{1}{3} \ell w h$

The number of degrees of arc in a circle is 360 .
The number of radians of arc in a circle is 2π.
The number of the mcasures in degrees of the angles of a triangle is 180 .

1
If $(x+3) y=x^{2}-x+12$, what is the value of y when $x=3$?
A) 3
B) 4
C) 6
D) 8

Questions 3 and 4 refer to the following information.

The cost C for maintenance on a heating system increases each year by 2.8%. If Mark paid $\$ 250$ this ycar for maintenance, the cost t years from now can be given by the function $C(t)=250 P^{t}$.

3

What is the value of P ?
A) 0.28
B) 0.028
C) 1.028
D) 1.28

4

What is the approximate cost in 4 years?
A) $\$ 265$
B) $\$ 279$
C) $\$ 310$
D) $\$ 320$

$$
\frac{x}{4}-\frac{y}{4}=1
$$

In the $x y$-plane, which of the following could be the graph of the function above?

A) $\frac{\pi}{6}$
B) $\frac{\pi}{4}$
C) $\frac{\pi}{3}$
D) $\frac{\pi}{2}$

8

If $i=\sqrt{-1}$, which of the following is equal to $\frac{1-i^{2}}{i}$?
A) $-i$
B) $i+2$
C) $-2 i$
D) $i+1$

What is the remainder when $x^{2}-3 x+5$ is divided by $x-1$?
A) 2
B) 3
C) 4
D) 5

10

$$
(\sqrt[k]{16})(\sqrt[k]{8})=2
$$

In the equation above, what is the value of k ?
A) 4
B) 5
C) 6
D) 7

$$
\begin{gathered}
\alpha x-y=1 \\
x+2 y=3
\end{gathered}
$$

If the lines represented above are perpendicular, which of the following is the valuc of a ?
A) 3
B) 2
C) -2
D) -3

12

Claire works one week and earns a dollars. If she had worked 5 more hours, she would have earned b dollars. If the hourly rate is constant, what is the hourly rate?
A) $\frac{b}{5}$ dollars
B) $\frac{a}{5}$ dollars
C) $\frac{a-b}{5}$ dollars
D) $\frac{b-a}{5}$ dollars

Questions 13 and 14 refer to the following information.

		Holiday				
		Thanksgiving	Memorial Day	Labor Day	Total	
Gender	Males	40		35	125	
	Females	63				
	Total		140	109	352	

A community group responded to a survey that asked which holiday is their favorite. The incomplete survey data are shown in the table above.

13

How many females responded to the survey that Memorial Day is their favorite holiday?
A) 50
B) 75
C) 90
D) 105

14

Which of the following categories accounts for approximatcly 21 percent of all the survey respondents?
A) Females choosing Memorial Day
B) Males choosing Labor Day
C) Females choosing Thanksgiving
D) Females choosing Labor Day

$$
C=-1.5 K+300
$$

The linear equation above shows the cost, C, of producing K toys. Based on the information, which of the following must be true?
I. There is a positive correlation between C and K.
II. When the company produces 20 toys, the cost is $\$ 270$.
III. As K increases by $10, C$ decreases by $\$ 15$.
A) $I I$ only
B) I and II only
C) I and III only
D) II and III only

16

If $x^{2}+k x+k+1=(x+p)(x+2)$ for all values of x and k and p are constants, what is the value of k ?
A) 5
B) 4
C) 3
D) 2

$$
f(x)=2 x^{2}-3
$$

In the equation above, if $\frac{1}{3} f(\sqrt{k})=3$, what is the value of k ?
A) 3
B) 4
C) 5
D) 6

18

In the $x y$-plane above, what is the measure, in radians, of angle $A O B$?
A) $\frac{\pi}{3}$
B) $\frac{\pi}{2}$
C) $\frac{5 \pi}{12}$
D) $\frac{7 \pi}{12}$

21

In the $x y$-plane above, the figure shows a regular hexagon with side length of 5 . What is the value of a ?
A) 10.5
B) 11
C) 11.5
D) 12

20

$$
\begin{aligned}
& y>-2 x+a \\
& y<3 x+b
\end{aligned}
$$

In the system of inequalities, a and b are constants. In the $x y$-plane , if $(0,1)$ is a solution to the system. Which of the following must be true?
A) $a>b$
B) $a=b$
C) $a<b$
D) $a=-b$

$$
(x-1)\left(x^{2}+2 x-1\right)=0
$$

Which of the following is the solution set of the equation above?
А) $\left\{1, \frac{1 \pm \sqrt{5}}{2}\right\}$
B) $\left\{1, \frac{-2 \pm \sqrt{5}}{2}\right\}$
C) $\{1,-2 \pm 2 \sqrt{2}\}$
D) $\{1,-1 \pm \sqrt{2}\}$

22

In the figure above, If $\overline{A B} \| \overline{C D}$, which of the following must be true?
A) $B E \cdot C E=A E \cdot D E$
B) $\angle A B E=\angle C D E$
C) $\overline{B C} \perp \overline{A D}$
D) $\frac{A B}{C D}=\frac{B E}{C E}$

25

A certain dancing group does not receive applicants whose height is less than 5 feet or more than 6 feet. Which of the following inequalities can be used to determine the height h, in feet, of applicants who are not accepted in the group?
A) $|h-5|>6$
B) $|h-6|>5$
C) $|h-5.5|<0.5$
D) $|h-5.5|>0.5$

26

$$
a^{-2}+3 a^{-1}-10=0
$$

In the equation above, $a>0$. What is the value of a ?
A) $\frac{1}{2}$
B) 2
C) 3
D) 4
A) $-\frac{2}{5}$
B) $-\frac{5}{2}$
C) $\frac{2}{5}$
D) $\frac{5}{2}$

In the figure above, if the volume of the cube is 64 , what is the length of diagonal $\overline{P Q}$?
A) 4
B) $4 \sqrt{2}$
C) $4 \sqrt{3}$
D) $8 \sqrt{2}$

28

$$
F=k \frac{v^{2}}{r}
$$

In the equation above, k is a constant. If v is tripled and r is halved, which of the following is true?
A) F is tripled.
B) F is multiplied by 8 .
C) F is multiplied by 12 .
D) F is multiplied by 18 .

29

Note: Figure not drawn to scale.
In an isosceles triangle with a height 10 and a base 10, a square is inscribed with side x along the base of the triangle as shown above. What is the area of the square?
A) 16
B) 25
C) 26.25
D) 36

30

$$
\begin{aligned}
& |k-3|=10 \\
& |m+3|=6
\end{aligned}
$$

In the system of equation above, what is the greatest value of $k-m$?
A) 10
B) 16
C) 22
D) 24

DIRECTIONS

For questions 31-38, solve the problem and enter your answer in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles are filled in correctly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded as 3.5 or $7 / 2$. (If grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or truncated, but it must fill the entire grid.

31

Note: Figure not drawn to scale.
In the rectangle above, $\tan \angle B A P=\frac{1}{3}$ and $\tan \angle C D P=\frac{2}{5}$. What is the value of $\frac{B P}{C P}$?

32

$$
a^{(x+1)^{2}}=\left(\frac{1}{a}\right)^{4 x}
$$

In the equation above, $a>0$. What is the value of x ?

33

$$
\text { Kinetic energy }=\frac{1}{2} m v^{2}
$$

In the equation above, kinetic energy is the energy of motion, where m is the mass and v is the speed of an object. If a $k-\mathrm{kg}$ roller coaster car is moving 16 meters per second and the other $2 k$ - kg roller coaster is moving 8 meters per second, what is the ratio of the kinetic energy of the k-kg roller coaster to the kinetic energy of the $2 k-\mathrm{kg}$ roller coaster?

34

$$
h=3 t(18-t)
$$

An arrow is shot upward on the moon with an initial velocity of 54 meters per second and returns to the surface. If the height is given by the equation above, what is the maximum height, in meters, that the arrow can reach?

In the $x y$-plane above, the graphs of line ℓ and line m intersect at point P. If line ℓ is perpendicular to line m, what is the length of $\overrightarrow{O P}$?

In the $x y$-plane above, the graphs of functions f and g intersect at points B and C. What is the area of quadrilateral $A B C D$?

38

$$
g(x)=2 f(x)+k
$$

In the equation above, $f(x)$ is a linear function and k is a constant. If $g(2)=10$ and $g(5)=18$, what is the slope of the function $f(x)$?

STOP

If you finish before time is called, you may check your work on this section only. Do not turn to any other section in the test.

Test 6 Answers and Explanations

$\begin{array}{\|c} \text { SECTION } \\ \hline \mathbf{3} \end{array}$,	2	3.	4	S	66	T,	8 \%	9.	10
	B	C	D	B	D	D	A	C	C	B
	11	12	13	14	15.	16	17	18\%	19	20
	C	D	A	C	C	2	5	8	3,4	128
$\begin{gathered} \text { SECTION } \\ \mathbf{4} \end{gathered}$	I	2	3	4,	1\%	6	3	$8{ }^{8}$	9	10
	A	C	C	B	C	D	C	C	B	D
	14	12	13	14	14,	16,	17	[4]	19,	, 20.
	B	D	C	D	D	A	D	D	C	C
	21		3s!	342	+ 28.	4	1		$4 \operatorname{cis}^{4}$	
	D	D	D	C	D	A	C	D	B	$128 / 245$
	31\%	Naver	33		35%	36	$1-8+5$	$\frac{1}{518}$		
	5/6	1	2	243	2.4	5	7.5	4/3		

Test \#7

Math Test - No Calculator

25 MINUTES, 20 QUESTIONS

Turn to Section 3 of your answer sheet to answer the questions in this section.

DIRECTIONS

For questions 1-15, solve each problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 16-20, solve the problem and enter your answer in the grid on your answer sheet. Please refer to the directions before question 16 on how to enter your answers in the grid. You may use any available space in your test booklet for scratch work.

NOTE

1. The use of a calculator is not permitted.
2. All variables and expressions used represent real numbers unless otherwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the domain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

REFERENCE

$A=\pi r^{2}$
$C=2 \pi r$

$A=\ell w$

$A=\frac{1}{2} b h$

Special Right Trianglcs
$c^{2}=a^{2}+b^{2}$

$V=\ell w h$

$$
V=\pi r^{2} h
$$

$V=\frac{4}{3} \pi r^{3}$

$V=\frac{1}{3} \pi r^{2} h$

$$
V=\frac{1}{3} \ell w h
$$

The number of degrees of arc in a circle is 360 .
The number of radians of arc in a circle is 2π.
The number of the measures in degrees of the angles of a triangle is 180 .

$$
f(x)=-\frac{5}{3} x+b
$$

In the function above, b is a constant. If $f(9)=5$, what is the value of $f(3)$?
A) 15
B) 10
C) -15
D) -25

2

$$
2 \leq x \leq 10
$$

Which of the following is equivalent to the expression above?
A) $|x+6| \geq 4$
B) $|x+6| \leq 4$
C) $|x-6| \geq 4$
D) $|x-6| \leq 4$

4

$$
x^{-2}\left(\frac{1}{\sqrt{x}}\right)
$$

Which of the following is equivalent to the expression shown above?
A) $\frac{1}{\sqrt{x^{5}}}$
B) $\frac{\sqrt{x^{5}}}{2}$
C) $\frac{1}{\sqrt{x^{3}}}$
D) $\frac{1}{x^{3}}$

In the rectangle above, E and F are the midpoints of $\overline{B C}$ and $\overline{C D}$ respectively. If the value of $\sin \angle B A E$ is 0.6 , what is the value of $\tan \angle E F C$?
A) $\frac{1}{2}$
B) $\frac{2}{3}$
C) $\frac{3}{5}$
D) $\frac{3}{2}$

$$
\left(a-\frac{1}{a}\right)^{2}
$$

Which of the following is equivalent to the expression above?
A) $a^{2}-\frac{1}{a^{2}}$
B) $a^{2}+\frac{1}{a^{2}}$
C) $a^{2}+\frac{1}{a^{2}}+2$
D) $a^{2}+\frac{1}{a^{2}}-2$

$$
\frac{1}{3} x-\frac{1}{6} y=10
$$

Which of the following equations represents a line that is parallel to the graph of the equation above?
A) $4 x+y=5$
B) $2 x+4 y=9$
C) $5 x-10 y=9$
D) $10 x-5 y=11$

11

$$
\sqrt{\frac{x-2}{x}}=2
$$

Which of the following is the solution to the equation above?
A) $\frac{2}{3}$
B) $\frac{3}{2}$
C) $-\frac{2}{3}$
D) Undefined

$$
\begin{aligned}
& y=k \\
& y=(x+5)(x-5)
\end{aligned}
$$

In the system of equations above, k is a constant. If the system has no solution, which of the following could be the value of k ?
A) 50
B) 25
C) -25
D) -50

If $a>1$, which of the following is cquivalent to $\frac{1-\frac{2}{3 a}}{a-\frac{4}{9 a}}$?
A) $\frac{3 a-2}{3 a+2}$
B) $\frac{3}{3 a-2}$
C) $\frac{3}{3 a+2}$
D) $\frac{3 a-2}{3}$

15

$$
f(x)=2(x-a)^{2}+b
$$

In the function above, a and b are constants. If $f(x)=2 x^{2}-4 x+27$ is equivalent to the expression above, what is the value of b ?
A) 25
B) 26
C) 28
D) 32

13

If $4 x-y=\frac{2}{3}$, what is the value of $\frac{81^{3 x}}{27^{y}}$?
A) 3
B) 9
C) 27
D) 81

DIRECTIONS

For questions 16-20, solve the problem and enter your answer in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles are filled in correctly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded as 3.5 or $7 / 2$. (If $3\left|\frac{1}{6} /\right|^{2}$ is is entered into the grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or truncated, but it must fill the entire grid.

Acceptable ways to grid $\frac{2}{3}$ are:

Answer: 201
Either position is correct.

Note: You may start your answers in any column, space permitting. Columns you don't need to use should be left blank.

3
 \section*{$\therefore \quad \because \quad \because \quad \because \quad$.}

16

For the function $f, y=f(x)$ is inversely proportional to x. If $f(5)=24$, what is the value of $f(10)$?

17

The graphs of $f(x)=a x^{3}$ and $g(x)=x$ are shown in the $x y$-plane above, where a is a constant. If the area of $\triangle A O B$ is $\frac{1}{8}$, what is the valuc of a ?

20

In the figure above, the value of $\sin x$ is 0.6 and the length of $\overline{A B}$ is 12 . What is the area of $\triangle A B C$?

STOP

If you finish before time is called, you may check your work on this section only. Do not turn to any other section in the test.

Math Test - Calculator

55 MINUTES, 38 QUESTIONS

Turn to Section 4 of your answer sheet to answer the questions in this section.

DIRECTIONS

For questions 1-30, solve each problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 31-38, solve the problem and enter your answer in the grid on your answer sheet. Please refer to the directions before question 31 on how to enter your answers in the grid. You may use any available space in your test booklet for scratch work.

NOTE

1. The use of a calculator is permitted.
2. All variables and expressions used represent real numbers unless otherwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the domain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

REFERENCE

$A=\pi r^{2}$
$C=2 \pi r$
$A=\ell w$
$A=\frac{1}{2} b h$

Special Right Trianglt

$V=\ell w h$

$V=\pi r^{2} h$

$V=\frac{4}{3} \pi r^{3}$

$V=\frac{1}{3} \pi r^{2} h$

$V=\frac{1}{3} \ell w h$

The number of degrees of arc in a circle is 360 .
The number of radians of arc in a circle is 2π.
The number of the measures in degrees of the angles of a triangle is 180 .

1

Peter opened a hardware store recently. The graph above shows the profit during the first 10 business days. On which interval is the profit strictly increasing?
A) Between day 1 and 3
B) Between day 3 and 4
C) Between day 4 and 6
D) Between day 6 and 10

2

If $\frac{x}{y}=2$, what is the value of $6\left(\frac{x^{2}}{y}\right)\left(\frac{3}{2 x}\right)$?
A) 18
B) 15
C) 12
D) 9

In the figure above, lines ℓ and m are parallel. What is the value of x ?
A) 30
B) 32.5
C) 35
D) 37.5

If $x+y=12$ and $x-y=4$, what is the value of $\frac{x^{2}-y^{2}}{2 x}$?
А) 3
B) 6
C) 8
D) 9

5

$$
C(t)=110 t+300
$$

The cost C, in dollars, of renting a town party room is modeled by the function above, where t is the number of hours used. Claire rented the room for 5 hours, but she wants to add two more hours. How much more will she pay for using additional hours?
A) $\$ 200$
B) $\$ 220$
C) $\$ 500$
D) $\$ 520$

6

Jessica is travelling to Washington D.C. The graph above shows the distance she traveled during the first 10 hours. In which time interval did the graph show the greatest average rate of change?
A) Between 0 and 2
B) Between 2 and 4
C) Between 4 and 6
D) Between 8 and 10

$$
\left(\frac{3+i}{2-i}\right)(a+b i)=1
$$

In the equation above, a and b are constants. If $i=\sqrt{-1}$, what is the value of a ?
A) $-\frac{1}{2}$
B) $-\frac{1}{5}$
C) $\frac{1}{5}$
D) $\frac{1}{2}$

12

Note: Figure not drawn to scale.
In the $x y$-plane above, the graph of $y=\frac{1}{3} x+2$ is perpendicular to the graph of line ℓ. What is the value of a ?
A) 2
B) 3
C) 4
D) 4.5

Boy's Shoe Size	7	7.5	8	8.5
Foot Length (in)	9.25	9.5	9.75	10

The table shows the relationship of a boy's shoe size and the length of a boy's foot, in inches. What is the correlation coefficient?
A) -1
B) -0.95
C) 0.95
D) 1

14

In triangle $R S T$, if $\cos \angle R=\sin \angle T$, which of the following must be true?
A) Triangle $R S T$ is equilateral.
B) Triangle $R S T$ is isosceles.
C) Triangle $R S T$ is an obtuse triangle.
D) Triangle $R S T$ is a right triangle.

The graph of a quadratic function $f(x)=a x^{2}+b x+c$ is shown in the $x y$-plane above. Which of the following must be true?

1. $a>0$
II. $b>0$
III. $c>0$
A) I only
B) 1 and II only
C) II and III only
D) I, II, and III

16

$$
\begin{aligned}
& \frac{1}{12} x-\frac{1}{24} y=\frac{1}{8} \\
& 5 x+3 y=2
\end{aligned}
$$

If (a, b) is the solution to the system of equations above, what is the value of a ?
A) -2
B) -1
C) 1
D) 2

$$
x^{2}+y^{2}-6 x-8 y=0
$$

The equation of a circle in the $x y$-plane is shown above. What is the area of the circle?
A) 15.7
B) 31.4
C) 62.8
D) 78.5

A statistician chose 100 families at random from each of two towns and asked how many pets they own. The results are shown in the table above. There is a total of 10,000 families in East village and 15,000 families in West village.

17

What is the median number of pets for all families surveyed?
A) 1
B) 1.5
C) 2
D) 3

18

What is the expected total number of families, who own 3 pets in the two villages?
A) 25
B) 1,000
C) 2,000
D) 3,125

20

Note: Figure not drawn to scale.
In the figure above, $A B: B C: C D=3: 5: 2$. If the sum of the areas of the shaded regions is 13 , what is the area of $\triangle E B C$?
А) 13
B) 17
C) 20
D) 25

$$
K \leq-6 \text { or } K \geq 14
$$

Which of the following is equivalent to the expression of inequalities above?
A) $|K+4| \leq 10$
B) $|K+4| \geq 10$
C) $|K-4| \leq 10$
D) $|K-4| \geq 10$

22

Figure 1
In the figures above, both of the water tanks are in the shape of a right circular cone. If the larger tank can hold 125 gallons of water, how many gallons of water can the smaller tank hold?
A) 5
B) 25
C) 31.25
D) 62.5

In the figure above, right triangle $R S T$ bordered by three semicircles on each side. If the area of semicircle I is 8 and the arca of semicircle $I I$ is 24 , what is the length of $\overline{S T}$?
A) $\frac{16}{\sqrt{\pi}}$
B) $\frac{16}{\pi}$
C) $\frac{8}{\sqrt{\pi}}$
D) $\frac{8}{\pi}$

The graph of g is shown in the $x y$-plane above. If $f(x)=2 g(x)-5$, what is the average rate of change of $f(x)$ between -2 and 4 ?
A) $\frac{1}{2}$
B) $\frac{1}{3}$
C) $-\frac{1}{4}$
D) $-\frac{1}{3}$

25

If the value of k^{-5} is twice the value of $4 k^{-2}$, what is the value of k ?
A) $\frac{1}{4}$
B) $\frac{1}{2}$
C) 2
D) 4

In the figure above, a right cylinder is inscribed in a sphere with radius 10 . If the radius of the circular base of the cylinder is 6 , what is the volume of the cylinder?
A) 144π
B) 288π
C) 576π
D) 720π

27

A carton contains k boxes of paper cups and each box contains 100 paper cups. If the carton cost d dollars, what is the cost per paper cup in cents?
A) $k d$
B) $\frac{d}{k}$
C) $\frac{d}{100 k}$
D) $\frac{100 k}{d}$

30

The graph of $y=|a x(x-6)|$ is shown in the $x y$-plane above. Which of the following could be the value of a ?
A) $-\frac{1}{2}$
B) $-\frac{1}{3}$
C) 2
D) 3

DIRECTIONS

For questions 31-38, solve the problem and enter your answer in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles are filled in correctly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded as 3.5 or $7 / 2$. (If $-\frac{1 / 2}{-10 / 2}$ is entered into the grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or truncated, but it must fill the entire grid.
 Acceptable ways to grid $\frac{2}{3}$ are:

Answer: 201
Either position is correct.

Note: You may start your answers in any column, space permitting. Columns you don't need to use should be left blank.

31

The lines with equations $y=\frac{2}{3} x$ and $y=2 x-8$ are shown in the $x y$-plane above. What is the area of triangle $O P R$?

In the $x y$-plane above, the slope of $\overline{P Q}$ is -1 and the slope of $\overline{Q R}$ is $\frac{1}{2}$. What is the slope of $\overline{P R}$?

34

$$
\begin{aligned}
& y \geq-3 x+1200 \\
& y \geq 15 x+300
\end{aligned}
$$

In the $x y$-plane above, a point with coordinates (r, s) lies in the solution set of the system of inequalities above. What is the minimum possible value of s ?

35

In the $x y$-plane above, what is the area of triangle $A B C$?

36

The graph of $y=-(x-2)(x+5)$ is shown in the $x y$-plane above. What is the area of triangle $S T R$?

A consumer analyst believes that a new car will lose 18 percent of its value every year. After n years, the value of a new car that costs $\$ 20,000$ is modeled by $V(t)=20,000 \cdot C^{n}$, where V is the value of the car after n years.

37

Based on the information above, what is the value of C?

38

To the nearest dollar, what is the value of the car 5 years after it was purchased? (Note: Disregard the $\$$ sign when gridding your answer.)

STOP

If you finish before time is called, you may check your work on this section only. Do not turn to any other section in the test.

Test 7 Answers and Explanations

$\begin{gathered} \text { SECTION } \\ 3 \end{gathered}$	\% 1	2	3	4	5	6.	\%1	8	9	10
	D	B	A	A	D	C	D	B	C	D
	11	12	13.	14	15	16	47.	18.	19	20
	C	D	A	C	B	12	27	54	4	2
$\begin{gathered} \text { SECTION } \\ 4 \end{gathered}$, , ,	2,	, ${ }^{\text {a }}$	4, ${ }^{4}$	S',	6. ${ }^{3}$	7,	[8, 8	, ${ }^{\text {a }}$	10
	B	A	B	A	B	B	D	A	C	A
	I,	12,	4 13	11	18	19,	Nex	-	$18,$	- S^{26}
	D	B	D	D	C	C	C	D	D	A
	$x^{2 x}+x^{2}=$			$1+244$	\log				5xive	
	D	C	A	D	B	C	B	B	A	149/315
	31	3	33			4.	hesting			
	8	5/4	50	1050	40	35	0.82	7415		

SAT
Test \#8

Math Test - No Calculator

25 MINUTES, 20 QUESTIONS

Turn to Section 3 of your answer sheet to answer the questions in this section.

DIRECTIONS

For questions 1-15, solve each problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 16-20, solve the problem and enter your answer in the grid on your answer sheet. Please refer to the directions before question 16 on how to enter your answers in the grid. You may use any available space in your test booklet for scratch work.

NOTE

1. The use of a calculator is not permitted.
2. All variables and expressions used represent real numbers unless otherwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the domain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

REFERENCE

$A=\pi r^{2}$
$C=2 \pi r$

$A=\frac{1}{2} b h$

Special Right Triangles

$V=\ell w h$

$$
V=\pi r^{2} h
$$

$$
V=\frac{4}{3} \pi r^{3}
$$

$V=\frac{1}{3} \pi r^{2} h$

$$
V=\frac{1}{3} \ell w h
$$

The number of degrees of arc in a circle is 360 .
The number of radians of arc in a circle is 2π.
The number of the measures in degrees of the angles of a triangle is 180 .
A) 1
B) 2
C) 4
D) 8

2

In the figure above, the diameter of the semicircle is 10 and the length of $\overline{C D}$ of rectangle $A B C D$ is 3.
What is the length of $\overline{B C}$?
A) 4
B) 6
C) 7
D) 8

3

If $16=\left(\frac{1}{4}\right)^{\frac{-1}{m}}$, what is the value of m ?
A) $-\frac{1}{4}$
B) $-\frac{1}{2}$
C) $\frac{1}{4}$
D) $\frac{1}{2}$

4

Alex spends $\$ 2.25$ per gallon on gasoline. If Alex uses one gallon of gasoline to travel 30 miles, how many dollars will he spend to travel 240 miles?
A) 18
B) 20
C) 24
D) 28

5

In the triangle above, the length of $\overline{D B}$ is 4 and the length of $\overline{C D}$ is 6 . What is the area of triangle $A C D$?
A) 24
B) 27
C) 30
D) 39

6

If a and b are positive numbers, and 125 percent of a^{2} is equal to 5 percent of b^{2}, what is the value of $\frac{a}{b}$?
A) $\frac{1}{5}$
B) $\frac{2}{5}$
C) 2
D) 5

Questions 7 and 8 refer to the following information.

$$
C(t)=15+0.15(T-K)
$$

The cost of using a smart phone is $\$ 15$ for the first 200 minutes and $\$ 0.15$ for additional minute. The cost C is modeled by the equation above, where T is the length of time in minutes and K is a constant.

7

Based on the information above, what is the value of K ?
A) 0.15
B) 1
C) 100
D) 200

8

If a customer paid $\$ 36$ for using his phone, how many minutes did he use?
A) 210
B) 340
C) 450
D) 500

If $x+1$ is a factor of $x^{4}-3 x^{3}-a x+a$, where a is a constant, what is the value of a ?
A) -4
B) -2
C) 2
D) 4

In the right triangle above, the value of $\sin C$ is 0.6 and the length of $\overline{B C}$ is 20 . What is the length of $\overline{A D}$?
A) 7.2
B) 8.0
C) 9.6
D) 10

If $a(x+b)=3 x-15$ for all real values of x, what is the value of b ?
A) -5
B) -3
C) 3
D) 5

A semicircle is shown in the $x y$-plane above. If the semicircle intersects the y-axis at point R, what is the value of b ?
A) 3
B) 4
C) 5
D) 6

$$
\frac{3+i}{3-i}=a+b i
$$

In the cquation above, a and b are real numbers. If $i=\sqrt{-1}$, what is the value of a ?
A) 0.2
B) 0.4
C) 0.6
D) 0.8

Questions 14 and 15 refer to the following information.

Gender	Algebra	Geometry	Total
Male	80		
Female			90
Total	120		200

The incomplete table above shows the results of a survey about elective subject preferences given to 200 students.

14

What is the probability that a randomly selected female student prefer gcometry?
A) 0.2
B) 0.25
C) 0.3
D) 0.4

15
What fraction of male students prefer geometry?
A) $\frac{3}{20}$
B) $\frac{3}{11}$
C) $\frac{8}{11}$
D) $\frac{3}{8}$

DIRECTIONS

For questions 16-20, solve the problem and enter your answer in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles are filled in correctly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.

4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded as 3.5 or $7 / 2$. (If $3 \mid 1 / 2$ is is entered into the grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or truncated, but it must fill the entire grid.

Acceptable ways to grid $\frac{2}{3}$ are:

Answer: 201
Either position is correct.

Note: You may start your answers in any column, space permitting. Columns you don't need to use should be left blank.

Note: Figure not drawn to scale.
In the figure above, line ℓ, m, and n are parallel. If $A B=8, B C=12$, and $P Q=10$, what is the length of $\overline{Q R}$?

17

Nigel drove from city A to city B at the speed of 60 miles per hour, and returned along the same route at the speed of 40 miles per hour. If it took $4 \frac{1}{2}$ hours for the round trip, what is the distance, in miles, between city A and city B ?

18

$$
x^{3}-3 x^{2}+5 x=1,5
$$

For what real value of x is the equation above true?

$$
x^{2}+(k+1) x+16=(x+h)^{2}
$$

In the equation above, k and h are positive constants. If the equation is true for all real numbers of x, what is the value of k ?

20

Squares $A B C D$ and $D E F G$ with integer-length sides of b and a respectively are shown in the figure above. If the area of the shaded region is 28 , what is the area of square $A B C D$?

STOP

If you finish before time is called, you may check your work on this section only. Do not turn to any other section in the test.

Math Test - Calculator

55 MINUTES, 38 QUESTIONS

Turn to Section 4 of your answer sheet to answer the questions in this section.

DIRECTIONS

For questions 1-30, solve each problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 31-38, solve the problem and enter your answer in the grid on your answer sheet. Please refer to the directions before question 31 on how to enter your answers in the grid. You may use any available space in your test booklet for scratch work.

NOTE

1. The use of a calculator is permitted.
2. All variables and expressions used represent real numbers unless otherwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the domain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

REFERENCE

$A=\pi r^{2}$
$A=\ell w$

$$
A=\frac{1}{2} b h
$$

$V=\pi r^{2} h$

$c^{2}=a^{2}+b^{2}$

$V=\frac{4}{3} \pi r^{3}$

Special Right Triangles

$V=\ell w h$

The number of dcgrees of arc in a circle is 360 .
The number of radians of arc in a circle is 2π.
The number of the measures in degrees of the angles of a triangle is $\mathbf{1 8 0}$.

If $a x+b x=48$, what is the value of $2 a+2 b$ when $x=4$?
A) 12
B) 18
C) 24
D) 48

2

In the figure above, $\overline{A B}$ and $\overline{C D}$ are parallel. What is the value of $x-y$?
A) 50
B) 55
C) 60
D) 65

3

In the $x y$-plane above, points A and B lie on line ℓ. If $A B=5$, what is the y-intercept of the line?
A) $\left(0, \frac{5}{2}\right)$
B) $\left(0, \frac{8}{3}\right)$
C) $(0,3)$
D) $\left(0, \frac{10}{3}\right)$

In the $x y$-plane, line ℓ is parallel to the x-axis and passes through point $(-4,-8)$. What is the equation of the line?
A) $x=-4$
B) $y=-4$
C) $x=-8$
D) $y=-8$

If $(\sqrt[4]{10})(\sqrt[3]{10})=100^{k}$, what is the value of k ?
A) $\frac{7}{24}$
B) $\frac{7}{12}$
C) 6
D) 12

The graph of the function f in the $x y$-plane is a parabola that has a maximum at point $(5,10)$. If the graph has one x-intercept at $(1,0)$, what is the other x-intercept of f ?
A) $(-1,0)$
B) $(8,0)$
C) $(9,0)$
D) $(10,0)$

8

$$
\begin{aligned}
& a^{2}=4 b^{2} \\
& a=1+2 b
\end{aligned}
$$

In the system of equations above, what is the value of a ?
A) $-\frac{1}{2}$
B) $-\frac{1}{4}$
C) $\frac{1}{4}$
D) $\frac{1}{2}$

9

The graphs of the functions f and g are shown above in the $x y$-plane. If $f(1.5)=k$, what is the valuc of $g(k)$?
A) 2
B) -1
C) -2
D) -4

10

$$
|2 x-6|<10
$$

Which of the following intervals is a subset of the values of x that satisfy the inequality above?
A) $-4<x<10$
B) $-2<x<9$
C) $-4<x<8$
D) $-1<x<7$

11

There are 20 black marbles and 16 white marbles in a container and no others. How many black marbles must be removed from the container so that the probability of randomly selecting a black marble from the container is $\frac{1}{3}$?
A) 8
B) 12
C) 16
D) 20

14

In the figure above, O and P are the centers of two semicircles of radius r. If the length of the perimeter is $8 \pi+16$, what is the value of r ?
A) 2
B) 4
C) 6
D) 8

13

If $x^{12}=5000$ and $\frac{x^{11}}{y}=10$, what is the value of $x y$?
A) 500
B) 100
C) 50
D) 10

Test Scores for a class of 30 Students

The graph above shows the test scores of 30 students. Based on the histogram above, what is the median score of the test?
A) 80
B) 70.5
C) 70
D) 40

Question 15 and 16 refer to the following information.

An audio recording studio's fee consists of a setup charge of $\$ 100$ plus a charge for session time at an hourly rate. The total fee for a session of 8 hours is $\$ 480$.

15

Which of the following functions f gives the total fee, in dollars, for a session of t hours in the studio?
A) $100+60 t$
B) $480+100 t$
C) $100+48 t$
D) $100+47.5 t$

16

Jackson spent 10 hours recording his favorite pop songs in the studio. How much did he pay for his recording, in dollars?
A) 525.5
B) 565
C) 585.6
D) 600

The graphs of $f(x)=(x-2)^{2}$ and $g(x)$ are shown in the $x y$-plane above. If the graphs intersect at point $(5,9)$, which of the following is the equation of $g(x)$?
A) $y=\frac{1}{2} x+\frac{13}{2}$
B) $y=\frac{2}{5} x+7$
C) $y=\frac{3}{5} x+6$
D) $y=x+4$

18

If $x^{2}+y^{2}=85$ and $x y=5$, what is the value of $\left(\frac{1}{x}-\frac{1}{y}\right)^{2}$?
A) 3
B) 5
C) 75
D) 80

$$
\frac{1}{x(x+1)}=\frac{a}{x}-\frac{b}{x+1}
$$

In the equation above, a and b are constants. If the equation is true for all positive values of x, what is the value of b ?
A) -1
B) 1
C) 2
D) 4

20

The linear function $2 x+y=-5$ in the $x y$-plane is to be reflected about the y-axis. Which of the following ordered pairs CANNOT be the coordinates of the resulting graph?
A) $(0,-5)$
B) $(2,-1)$
C) $(3,1)$
D) $(4,0)$

In the $x y$-plane above, the point Q is on the line $y=\frac{2}{3} x$. If the area of rectangle $O P Q R$ is 54 , what is the value of b ?
A) 3
B) 6
C) 9
D) 12

22

Harry bought a 10 pound bag of flour for $\$ 80$, a 25 pound bag of flour for $\$ 150$, and a 50 pound bag of flour. If the average (arithmetic mcan) cost per pound of all three bags is $\$ 6.00$, what was the price of the 50 pound bag of flour?
A) $\$ 200$
B) $\$ 240$
C) $\$ 280$
D) $\$ 320$

Questions 23 and 24 refer to the following information.

Which of the following scatterplots represents the data on the bar graph?
A)

B)

23

Of the following, who has the greatest percent of increase in scores from test 1 to test 2 ?
A) Abraham
B) Benjamin
C) Catherina
D) Edward

The bar graph shows the scores on the algebra tests for five students in Mrs. Lee's class.

Benjamin

25

City	Spring	Summar	Autumn	Winter
Amber	26	30	25	22
Buner	24	35	20	18

The table above gives high temperatures in degrees Celsius (C°) for Amber City and Buner City over the four seasons. Which of the following is true about the data shown for the four seasons?
A) The standard deviation of high temperatures in Amber City is larger than Buner City.
B) The standard deviation of high temperatures in Buner City is larger than Amber City.
C) The standard deviation of high temperatures in Amber City is the same as that of Buner City.
D) Based on the data above, the standard deviation of high temperatures in these cities cannot be determined.

26

Note: Figure not drawn to scale.
In the figure above, $\overline{P R}$ is tangent to circle O at point P and the length of $\overline{P R}$ is $\mathbf{1 2}$. If the value of $\sin \angle R$ is 0.8 , what is the radius of the circle?
A) 8
B) 12
C) 16
D) 20

27

$$
\begin{aligned}
2^{(x+2 y)} & =16 \\
3^{(2 x+y)} & =81
\end{aligned}
$$

In the system of equations, what is the value of x ?
A) 4
B) 3
C) $\frac{4}{3}$
D) $\frac{3}{4}$

28

$$
(x+y)^{2}-(x-y)^{2}=72
$$

In the cquation above, x and y are positive integers. Which of the following CANNOT be the value of $x+y$?
A) 9
B) 11
C) 19
D) 24

29

$P=$ The average of a and b
$Q=$ The average of b and c
$R=$ The average of c and a

The various averages (arithmetic mean) of two of the three numbers a, b, and c are calculated and arranged as shown above. If $P>Q>R$, which of the following is true?
A) $a=b=c$
B) $a>b>c$
C) $c>b>a$
D) $b>a>c$

30

Peter sets up a lemonade stand. He paid a set-up cost of $\$ 120$ and each cup of lemonade costs him $\$ 0.30$ to make. He sells each cup of lemonade for $\$ 0.75$. Which of the following represents the profit P as a function of the number of cups n of lemonade sold?
A) $P(n)=0.75 n-120$
B) $P(n)=0.75 n+120$
C) $P(n)=0.45 n-120$
D) $P(n)=0.45 n+120$

4

DIRECTIONS

For questions 31-38, solve the problem and enter your answer in the grid, as described below, on the answer sheet.
I. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles are filled in conectly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may have more than onc answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded
 grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or truncated, but it must fill the entire grid.

Acceptable ways to grid $\frac{2}{3}$ are:

Answer: 201

Either position is correct.

Note: You may start your answers in any column, space permitting. Columns you don't need to use should be left blank.

$$
\begin{aligned}
& 31 \text {. } x^{2}-4 x+y^{2}+4 x=0 \\
& \text { The equation of a circle in the } x y \text {-plane is shown } \\
& \text { above. To the nearest tenth, what is the area of the }
\end{aligned}
$$ circle?

32

The cost C, in dollars, of producing x units of a certain product can be modeled by the equation $C=\frac{198.4 x+1097}{16}$. According to the model, for every increase of 1 unit, by how many dollars will the cost increase? (Disregard the \$ sign when gridding your answer.)

If f is a linear function for which $f(10)-f(5)=10$, what is the value of $f(20)-f(8)$?

34

The graph of $y=a x^{2}+10$ is shown in the $x y$-plane above. If the area of square $A B C D$ is 400 , what is the value of a ?

Note: Figure not drawn to scale.
In the figure above, if the measure of $\angle A B C$ is 30°, what is the value of k ?

36

In the figure above, four congrucnt rectangles and a square are put together to form a larger square. The perimeter of each rectangle is 24 , and the area of the smaller square is 36 . If the dimensions of each rectangle are a and b as shown above, what is the value of b ?

In the figure above, two congruent circles are tangent to each other and are internally tangent to the larger circle. Line segment $A B$ is the diameter of the larger circle. If the area of each smaller circle is 10 , what is the area of the shaded region?

38

$$
\begin{aligned}
& f(x)=x^{2}-6 x+12 \\
& g(x)=k
\end{aligned}
$$

In the equations above, $f(x) \geq g(x)$ for all real numbers x. If k is a constant, what is the maximum value of k ?

STOP

If you finish before time is called, you may check your work on this section only. Do not turn to any other section in the test.

Test 8 Answers and Explanations

$\begin{gathered} \text { section } \\ \mathbf{3} \end{gathered}$	1	2	3	4	51	$\square 6$	\%	8	9	10 ,
	C	D	B	A	D	A	D	B	B	C
	11%	12,	13	14	15	46,	17	18	19	20 \%
	Λ	B	D	B	B	15	108	3	7	64
$\begin{gathered} \text { SECTION } \\ 4 \end{gathered}$, 1	2	3	4	+5,	66.	, \%	\%	9,	10
	C	A	B	D	A	C	C	D	C	D
	1,	19,	13,	44	15	16×1	17	18,	+58,	40
	B	B	A	C	D	C	D	A	B	D
	\|hen	+2\%,	$\text { , } 23$	(24						
	B	C	D	C	B	C	C	D	D 1	171/2 ${ }^{\text {C }}$
	$\sqrt{6} 3+1+2$	$\text { , } 3$	39+6	, ${ }^{3} 3^{2}$	$3^{3} \text {, }$	+16	\|+3			
	25.1	12.4	24	0.1	80	9	20	3		

Test \#9

Math Test - No Calculator

25 MINUTES, 20 QUESTIONS

Turn to Section 3 of your answer sheet to answer the questions in this section.

DIRECTIONS

For questions 1-15, solve each problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 16-20, solve the problem and enter your answer in the grid on your answer sheet. Please refer to the directions before question 16 on how to enter your answers in the grid. You may use any available space in your test booklet for scratch work.

NOTE

1. The use of a calculator is not permitted.
2. All variables and expressions used represent real numbers unless otherwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the domain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

REFERENCE

$A=\pi r^{2}$

$$
C=2 \pi r
$$

$A=\ell w$

$V=\ell w h$

$A=\frac{1}{2} b h$

$c^{2}=a^{2}+b^{2}$

Special Right Triangles

The number of degrees of arc in a circle is 360
The number of radians of arc in a circle is 2π.
The number of the measures in degrees of the angles of a triangle is 180 .

1

If $|k-5| \leq 8$, which of the following CANNOT be the value of k ?
A) 8
B) 2
C) -3
D) -4

2

In the $x y$-plane above, $\overline{P R}$ is the diagonal of rectangle $O P Q R$. If the length of $\overline{P R}$ is 17 , what is the value of k ?
A) 12
B) 15
C) 16
D) 20

3

In the $x y$-plane above, the area of triangle $R S T$ is 30 . What is the value of k ?
A) -2
B) 2
C) 3.5
C) 4

4

In the triangle above, $\cos a=\sin b$. If the length of $\overline{A B}$ is 20 and the measure of angle b is $\frac{\pi}{3}$ radians, what is the area of the triangle?
A) $40 \sqrt{2}$
B) $40 \sqrt{3}$
C) $50 \sqrt{3}$
D) $100 \sqrt{3}$

5

$$
f(x)=x-p
$$

In the function above, p is a constant. If $f(2)=5$, what is the value of $f(2 p)$?
A) -3
B) -1
C) 3
D) 6

Note: Figure not drawn to scale.

In the figure above, what is the value of $|a-b|$?
A) 20
B) 22
C) 24
D) 26

Questions 7 and 8 refer to the following information.

The scatterplot above shows the reading levels by grade for 15 students in the J.H book-reading club.

7

Based on the data above, what is the median reading Ievel for the 15 students?
A) 4
B) 5
C) 5.5
D) 6

8

What is the average reading level of $7^{\text {th }}$ and $8^{\text {th }}$ grade students?
A) 4
B) 5
C) 6
D) 6.5

$$
P=\frac{50 n-200}{n}+k
$$

The profit P from a car wash is modeled by the equation above, where n is the number of cars and k is a constant. Which of the following expressions represents n ?
A) $n=\frac{200+k}{50-p}$
B) $n=\frac{200-k}{50+p}$
C) $n=\frac{200}{50+k-p}$
D) $n=\frac{200}{k+p-50}$
A) 1
B) 2
C) 3
D) 4

11

$$
P(x)=3 x^{3}+a x-2
$$

In the function above, a is a constant. If the remainder when $P(x)$ is divided by $x+1$ is 2 , what is the value of a ?
A) -7
B) -5
C) 5
D) 7

12

The graph of $a x+b y=5$ is shown in the $x y$-plane above. Which of the following must be true?
A) $a<0$ and $b<0$
B) $a>0$ and $b<0$
C) $a<0$ and $b>0$
D) $a>0$ and $b>0$

13

In the figure above, the center of the circle is O.
The area of the shaded region is 80π and the measure of x is $\frac{2 \pi}{5}$ radians. What is the radius of the circle?
A) 6
B) 8
C) 9
D) 10

14

Note: Figure not drawn to scale.
Lines ℓ and m are perpendicular and intersect at point $T(1,3)$ as shown in the $x y$-plane above. If the slope of line ℓ is 1 , what is the area of $\triangle R S T$?
A) 1
B) 1.5
C) 2
D) 2.5

15

$$
\frac{x^{2}+3}{x-1}
$$

Which of the following is equivalent to the expression above?
A) $x+1$
B) $x(x+1)+3$
C) $x+1+\frac{4}{x-1}$
D) $\frac{x}{x-1}+x$

DIRECTIONS

For questions 16-20, solve the problem and enter your answer in the grid, as described below, on the answer sbeet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles are filled in correctly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded as 3.5 or $7 / 2$. (If $3 / 1 / 1 / 2$ is entered into the grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or truncated, but it must fill the entire grid.

If $\frac{1}{x-1}+\frac{1}{2 x-2}=\frac{1}{4}$, what is the value of $x-1$?

17

The figure above shows triangle $A B C$. The length of $\overline{A C}$ is 10 and the altitude of the triangle is 20 . If M and N are the midpoints of $\overline{A B}$ and $\overline{B C}$ respectively, what is the area of the shaded region?

19

If $P(x)=2 \sqrt{x-5}+3 x$, what is the minimum value of P ?

20

$$
\begin{aligned}
& x^{2}+y^{2}=8 \\
& y=\sqrt{2 x}
\end{aligned}
$$

In the system of equations above, what is the value of y ?

STOP

If you finish before time is called, you may check your work on this section only. Do not turn to any other section in the test.

Math Test - Calculator

55 MINUTES, 38 QUESTIONS

Turn to Section 4 of your answer sheet to answer the questions in this section.

DIRECTIONS

For questions 1-30, solve each problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 31-38, solve the problem and enter your answer in the grid on your answer sheet. Please refer to the directions before question 31 on how to enter your answers in the grid. You may use any available space in your test booklet for scratch work.

NOTE

1. The use of a calculator is permitted.
2. All variables and expressions used represent real numbers unless otherwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the domain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

REFERENCE

$A=\pi r^{2}$
$C=2 \pi r$
$A=\ell w$

$V=\ell w h$

$V=\pi r^{2} h$

$A=\frac{1}{2} b h$

$c^{2}=a^{2}+b^{2}$

$V=\frac{4}{3} \pi r^{3}$

Special Right Triangles

The number of degrees of arc in a circle is 360 .
The number of radians of arc in a circle is 2π.
The number of the measures in degrees of the angles of a triangle is 180 .

The Sky Telephone Company charges a cents for the first 3 minutes of a call and charges at the rate of r cents for each additional minute. If Jackson uses t minutes, where $t>3$, how much, in dollars, is his call?
A) $a+r t$
B) $a+r(t-3)$
C) $0.01(a+r(t-3))$
D) $0.01(a+r t-3)$

2

3

The graph of a circle shown in the $x y$-plane above, intersects the x-axis and y-axis at three points. What is the radius of the circle?
A) 4
B) 5
C) 6
D) 7

4

B) $\frac{m}{f+g}$
C) $\frac{2 m}{f+g}$
D) $\frac{m}{f}+\frac{m}{g}$

If Sally drives m miles from her house to her office in f hours, and drives back to her house in g hours, what is her average speed of the entire trip, in miles per hour?
A) $\frac{f+g}{2}$

7

Questions 5 and 6 refer to the following information.
Claire has $\$ 40$ in her own savings jar and puts in $\$ 10$ every week. David has $\$ 80$ in his own savings jar and puts in $\$ 8$ every week. Each of the graphs below shows the amount in the jar over time.

5

If the graphs intersect at the point $P(a, b)$, what is the valuc of b ?
A) 200
B) 220
C) 240
D) 260

6

When Claire has $\$ 200$ in her savings jar, how many dollars does David have in his savings jar?
A) 208
B) 220
C) 246
D) 252

Which of the following functions could represent the graph of $f(x)$ shown in the $x y$-plane above?
A) $f(x)=(x-2)\left(x^{2}+4 x-3\right)$
B) $f(x)=(x-2)\left(x^{2}-4 x-3\right)$
C) $f(x)=(x+2)\left(x^{2}+4 x+3\right)$
D) $f(x)=(x+2)\left(x^{2}-4 x+3\right)$

8

The cost of a notebook is $\$ 1.25$. The cost of a pencil is $\$ 0.30$. Grace has $\$ 35.00$ to spend on notebooks and pencils for her study club. If she must buy fifteen notebooks, what is the maximum number of pencils she can buy?
A) 54
B) 55
C) 70
D) 116

$$
\begin{aligned}
& x+y>3 \\
& a x+2 y<-2
\end{aligned}
$$

In the system of inequalities, a is a constant. If the system has no solution, what is the value of a ?
A) -2
B) -1
C) 1
D) 2

10

$$
f(x)=a x^{2}-4 x+b
$$

In the function f above, a and b are constants. If the zeros of the function $f(x)$ are -2 and 3 , what is the valuc of b ?

Jackie is driving a car at 10 miles per hour. The graph above shows the speed of his car over 8 seconds. During which of the following time intervals did the speed show the greatest average rate of change?
A) 0 to 2 seconds
B) 2 to 4 seconds
C) 4 to 6 seconds
D) 6 to 8 seconds

$$
P(x)=x^{2}+a x+b
$$

In the function above, if the value of $P(0)$ is 1 , which of the following must be true?
A) x is a factor of $P(x)$.
B) $x-1$ is a factor of $P(x)$.
C) The remainder when $P(x)$ is divided by $x-1$ is 0 .
D) The remainder when $P(x)$ is divided by x is 1 . 183/215

13

$$
f(x)=2 x^{2}-16 x+18
$$

If $f(x)=a(x+b)^{2}+c$ is equivalent to the function above, what is the value of c for $f(x)$?
A) -48
B) -14
C) 2
D) 50

14

$$
\frac{5-10 x}{2 x+1}
$$

Which of the following is equivalent to the expression above?
A) -5
B) $\frac{5}{2 x+1}-5$
C) $\frac{10}{2 x+1}+5$
D) $\frac{10}{2 x+1}-5$

15
City A

City B

The bar graphs above show the average temperatures in degrees Celsius for City A and City B over the four seasons. Based on the graphs above, which of the following is true?
A) The standard deviation of the average temperatures in City A is larger than City B.
B) The standard deviation of the average temperatures in City B is larger than City A.
C) The standard deviation of the average temperatures in City B is the same as that of City A.
D) Based on graphs above, the standard deviation of the average temperatures in these citielseatifot be determined.

16

The graphs of the functions f and g are shown in the $x y$-plane above. For which of the following values of x does $f(x)-g(x)=0$?
A) 1
B) 3
C) 6
D) 8

17

$$
\begin{aligned}
& \text { YQ Y } \\
& x^{2}+y^{2}-4 x+4 y=k
\end{aligned}
$$

The equation of a circle in the $x y$-plane, where k is an constant, is shown above. If the radius of the circle is 6 , what is the value of k ?
A) -28
B) -2
C) 14
D) 28

Questions 18 and 19 refer to the following information.

The graph above shows the earnings per share of stock for Milly Electronics for the first 8 days in March this year.

18

What is the average rate of change between days 1 and 8 ?
A) $\frac{3}{4}$ dollars per day
B) $\frac{7}{8}$ dollars per day
C) $\frac{8}{7}$ dollars per day
D) It cannot be determined based on the information given.

What is the equation of the line between day 2 and day 7 ?
A) $y=x+3$
B) $y=1.6 x+1.8$
C) $y=2.4 x+0.2$
D) $y=3 x-1$

185/215

$$
f(x)=2^{x+2}
$$

In the function above, which of the following is equivalent to $f(a+b)$?
A) $2\left(2^{a}+2^{b}\right)$
B) $4\left(2^{a}+2^{b}\right)$
C) $4\left(2^{a} \times 2^{b}\right)$
D) $4+\left(2^{a} \times 2^{b}\right)$

23

In the $x y$-plane above, if line ℓ has a slope of $-\frac{1}{3}$, what is the area of triangle $O P Q$?
A) 37.5
B) 60
C) 62.5
D) 75

14

24

In the figure above, $B E: E D=3: 2$. The area of $\triangle B E C$ is 15 and the area of $\triangle B E A$ is 12 . What is the area of $\triangle A E C$?
A) 15
B) 18
C) 20
D) 24

25

$$
f(x)=a(x-b)^{2}+k
$$

In the function above, a, b, and k are constants. If a and k are negative numbers, which of the following CANNOT be true?
A) $f(5)=-1$
B) $f(1)=k$
C) $f(2)=b$
D) $f(3)=1$

26

$$
\begin{aligned}
& (a-2) x+(b+2) y=8 \\
& b x+a y=4
\end{aligned}
$$

In the system of equations above, a and b are constants. If the system has infinitely many solutions, what is the value of a ?
A) $-\frac{4}{3}$
B) $-\frac{2}{3}$
C) $\frac{2}{3}$
D) $\frac{4}{3}$

27

A cylinder was altered by increasing the radius of its circle base by 10 percent and decreasing its height by k percent. If the volume of the resulting cylinder is 8.9% greater than the volume of the original cylinder, what is the value of k ?
A) 8.9
B) 10
C) 12
D) 15
∇

Questions 28 and 29 refer to the following information.

When Albert starts walking, Kimberly is 60 yards ahead of him. They are moving in the same direction on the same straight path. Albert walks 8 yards for every 4 yards that Kimberly walks. Albert walks 3 yards per second.

28

At these relative rates, in how many seconds will Albert catch up with Kimberly?
A) 20
B) 25
C) 30
D) 40

29

How many yards will Albert have to walk in order to catch up with Kimberly?
A) 100
B) 120
C) 240
D) 320

Note: Figure not drawn to scale.
In the $x y$-plane above, the graph of $y=a(x-3)^{2}-2$, where a is a constant, intersects line ℓ at points $P(0,16)$ and Q. What is the equation of line ℓ ?
A) $y=-8 x+16$
B) $y=-4 x+16$
C) $y=-3 x+16$
D) $y=-2 x+16$

DIRECTION

For questions 31-38, solve the problem and enter your answer in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the
 circles are filled in correctly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded
 grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or truncated, but it must fill the entire grid.

Acceptable ways to grid $\frac{2}{3}$ are:

Answer: 201
Either position is correct.

Note: You may start your answers in any column, space permitting. Columns you don't need to use should be left blank.

$$
h(x)=\frac{x-3}{x^{3}-3 x^{2}+x-3}
$$

For what value of x is the function h above undefined?

32

The state income tax where Alison lives is levied at the rate of $k \%$ of the first $\$ 30,000$ of annual income plus $(k+4) \%$ of any amount above $\$ 30,000$. This year Alison's income was $\$ 65,000$ and she paid $\$ 9,850$ for the income tax. What is the value of k ?

33

$$
b-3+(a-5) i=a+8 i
$$

In the equation above, a and b are real numbers. If $i=\sqrt{-1}$, what is the value of h ?

In the figure above, $A B=12, A C=15$, and $C D=6$. Both $\overline{A B}$ and $\overline{C D}$ are perpendicular to $\overline{A C}$. If the area of $\triangle A B E$ is p and the area of $\triangle C D E$ is q, then what is the value of $p-q$?

$$
h=-16 t^{2}+a t
$$

A football game begins with a kickoff. The formula for the kickoff is modeled by the equation above, where h is the height in feet of the football at t seconds and a is a constant. If the kickoff is in the air for 5 seconds, what is the value of a ?

14

In the figure above, cach of two circles has the same center O. If $O P: O Q=3: 5$ and the area of the shaded region is 40 , what is the area of the larger circle?
\square
\square $\%$ $\square \square$

$$
f(x)=a x^{2}+b x+c
$$

In the function f above, $f(0)=10$ and $f(-1)=18$. What is the value of $a-b$?

In the $x y$-plane, the graphs of $y=-x^{2}+12$ and line ℓ intersect at points $P(p, 3)$ and $Q(q,-4)$. What is the greatest possible value of the slope of line ℓ ?

STOP

If you finish before time is called, you may check your work on this section only. Do not turn to any other section in the test.

Test 9 Answers and Explanations

$\begin{gathered} \text { SECTION } \\ \mathbf{3} \end{gathered}$	1	2	3 3	4.	5 ,	6	1\%	8	9	10
	D	B	B	C	A	B	B	B	B	C
	11.	12	13	14	15	16	17	18	19	20
	A	D	D	A	C	6	75	35	10	2
$\begin{gathered} \text { SECTION } \\ \mathbf{4} \end{gathered}$	3	2	3	4	\% 5.	-6.6	15	\% 6	9	10.
	C	C	B	B	C	A	D	A	D	A
	11	12	13	4䌊					19	20.
	D	D	C	D	B	C	D	C	B	C
	$5 \sqrt{6}$	29	2							SBUT
	B	A	A	B	D	C	B	D	B	192/2 ${ }^{\text {P }}$
			183	$1+44$		186	5iventig	4-64y		
	3	13	16	45	80	62.5	8	7		

Test \#10

Math Test - No Calculator

25 MINUTES, 20 QUESTIONS

Turn to Section 3 of your answer sheet to answer the questions in this section.

DIRECTIONS

For questions 1-15, solve each problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 16-20, solve the problem and enter your answer in the grid on your answer sheet. Please refer to the directions before question 16 on how to enter your answers in the grid. You may use any available space in your test booklet for scratch work.

NOTE

1. The use of a calculator is not permitted.
2. All variables and expressions used represent real numbers unless otherwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the domain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

REFERENCE

$A=\pi r^{2}$
$C=2 \pi r$

$A=\ell w$

$V=\ell w h$

$V=\pi r^{2} h$
$c^{2}=a^{2}+b^{2}$
$A=\frac{1}{2} b h$

Special Right Triangles

$V=\frac{4}{3} \pi r^{3}$

$V=\frac{1}{3} \pi r^{2} h$

$$
V=\frac{1}{3} \ell w h
$$

The number of degrees of arc in a circle is 360 .
The number of radians of arc in a circle is 2π.
The number of the measures in degrees of the angles of a triangle is 180 .

3

A salesman's commission is k percent of the selling price of a car. This week Peter, a salesman, sold 10 cars for $\$ 20,000$ each. Which of the following represents the commission this week?
A) $200 k$
B) $2,000 \mathrm{k}$
C) $\frac{20,000}{k}$
D) $\frac{20,000 k}{100+k}$

4

Emily is walking a trail. After walking k percent of the length of the trail, she has 10 km left to go. Which of the following represents the length of the trail?
A) $10(100-k)$
B) $\frac{100-k}{10}$
C) $\frac{10 k}{100-k}$
D) $\frac{1000}{100-k}$

3

5

$$
C(x)=140,000+85 x
$$

A company that produces smart phones pays a startup cost and a certain amount of money to produce each smart phone. The cost of producing x smart phones is given by the function above. What is the meaning of the value 85 in the function?
A) the start-up cost
B) the selling price of one smart phone
C) the amount spent to produce each smart phone
D) the profit earned from the sale of one smart phone

6

Which of the following equations has the same solution as $2 x^{2}+12 x-32=0$?
A) $2(x+3)^{2}=32$
B) $2(x-3)^{2}=25$
C) $(x+3)^{2}=25$
D) $(x+3)^{2}=32$

7

The marketing department of a company estimates the price P, in dollars, of a smart phone by the equation $P=500-25 x$ over 10 years, where x is the number of years. What is the estimated decrease, in dollars, each year?
A) 20
B) 25
C) 100
D) 500

8

Which of the following best represents the correlation coefficient of the linear fit of the data shown above?
A) 0.95
B) -0.95
C) -1.00
D) -1.05

$$
\begin{aligned}
& 2 x-3 y=6 \\
& y=x-4
\end{aligned}
$$

What is the solution (x, y) to the system of equations above?
A) $(3,-1)$
B) $(4,0)$
C) $(5,1)$
D) $(6,2)$

10

Which of the following equations has a graph in the $x y$-plane for which y is always greater than 0 ?
A) $y=x+2$
B) $y=(x-2)^{2}$
C) $y=x^{3}+2$
D) $y=|x|+2$

Note: Figure not drawn to scale.
The graph of $y=a(x+1)(x-5)$ is shown in the $x y$-plane above, where a is a constant. If the graph with vertex (h, k) intersects the y-axis at point $(0,5)$, which of the following is equal to k ?
A) 7
B) 8
C) 9
D) 10

12

If $k=\frac{(x+1)(x-1)}{3}$ and $k \neq 0$, what does $3 x^{2}$ equal in terms of k ?
A) $3 k$
B) $9 k$
C) $3 k+1$
D) $9 k+3$

The average (arithmetic mean) of three positivc numbers, a, b, and c is 15 . When the greatest of these numbers is subtracted from the sum of the other two, the result is 5. If $a<b<c$, what is the value of $a+b$?
A) 20
B) 25
C) 30
D) 40

What are the solutions to $3(x-3)^{2}-6=14$?
A) $x=3 \pm \sqrt{20}$
B) $x=\frac{3 \pm \sqrt{20}}{3}$
C) $x=3 \pm \frac{\sqrt{20}}{3}$
D) $x=3 \pm \frac{\sqrt{60}}{3}$

14

$$
\frac{a(x+1)+b(x-1)}{x-2}=2+\frac{1}{x-2}
$$

The equation above is true for all values of $x \neq 2$, where a and b are constants. What is the value of a ?
A) $-\frac{1}{2}$
B) 2
C) 3
D) 4

3

DIRECTIONS

For questions 16-20, solve the problem and enter your answer in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles are filled in correctly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or truncated, but it must fill the entire grid.

Acceptable ways to grid $\frac{2}{3}$ are:

Answer: 201
Either position is corrcct.

Note: You may start your answers in any column, space permitting. Columns you don't need to use should be left blank.

$$
|x-5| \leq \frac{1}{2}
$$

What is the least value of x that satisfies the inequality above?

17

If the diameter of a cylindrical jar is increased by 100% without altering the volume, by what percent must the height be decreased? (Note: Disregard the \% sign when gridding your answer.)

18

$$
f(x)=\frac{x^{2}}{2}-20 x+k
$$

In the function f above, k is a constant. In the $x y$-plane, for what value of x does $f(x)$ have the same value of $f(10)$?

In the isosceles right triangle above, $A B=B C=10 \sqrt{2}$. Points D and E are the midpoints of $\overline{A B}$ and $\overline{B C}$ respectively. What is the area of the shaded region?

20

In the $x y$-plane above, the area of square $A B C D$ is equal to the area of triangle $C D P$. What is the value of a ?

Math Test - Calculator

55 MINUTES, 38 QUESTIONS

Turn to Section 4 of your answer sheet to answer the questions in this section.

DIRECTIONS

For questions 1-30, solve each problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 31-38, solve the problem and enter your answer in the grid on your answer sheet. Please refer to the directions before question 31 on how to enter your answers in the grid. You may use any available space in your test booklet for scratch work.

NOTE

1. The use of a calculator is permitted.
2. All variables and expressions used represent real numbers unless otherwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the domain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

REFERENCE

$A=\pi r^{2}$
$C=2 \pi r$

$$
A=\ell w
$$

$V=\ell w h$

$V=\pi r^{2} h$

$$
A=\frac{1}{2} b h
$$

$c^{2}=a^{2}+b^{2}$

$$
V=\frac{4}{3} \pi r^{3}
$$

The number of degrees of arc in a circle is 360 .
The number of radians of arc in a circle is 2π.
The number of the measures in degrees of the angles of a triangle is 180 .

An advertising medium charges d dollars for a basic fixed fee plus c cents for every 10 letters for an advertising campaign. If 300 letters are used for an advertising campaign, which of the following expressions represents the total amount, in dollars, of the advertisement?
A) $\frac{3 c}{10}+d$
B) $3 c+d$
C) $30 c+d$
D) $300 c+d$

2

$$
f(x)=a x+b
$$

In the function above, a and b are constants. If $f(0)=3$ and $f(3)=-8$, what is the value of $f(6)$?
A) -22
B) -19
C) -16
D) -12

$$
\begin{aligned}
& y=2^{x} \\
& y=x+5
\end{aligned}
$$

If ordered pair (x, y) is the solution to the system of equations above, what is the value of y ?
A) 2
B) 8
C) 16
D) 32

4

If $f(x-5)=x^{2}-5$, which of the following is equal to $f(-2)$?
A) 4
B) 1
C) -1
D) -4

If $a+b=10$ and $\frac{1}{a}+\frac{1}{b}=20$, what is the value of $a b$?
A) $\frac{1}{4}$
B) $\frac{1}{2}$
C) 2
D) 4

In the figure above, the area of rectangle $A B C D$ is 25 . What is the area of parallelogram $A F D E$?
A) 12.5
B) 18
C) 25
D) 27.5

4

Questions 7 and 8 refer to the following information.

The scores on a final reading test of three junior classes in a certain high school were shown on the bar graphs above.

7

Which class has the least standard deviation?
A) Class Alpha
B) Class Beta
C) Class Gamma
D) Based on the data, it cannot be determined.

8

What is the overall average score of these three combined classes?
A) 78
B) 80
C) 82
D) 84

9

$$
f(x)=x^{2}-8 x+12
$$

The function f is shown above. In the $x y$-plane, what are the coordinates of the vertex of the parabola defined by $g(x)=f(x-3)$?
A) $(-4,7)$
B) $(4,12)$
C) $(7,-4)$
D) $(7,12)$

10

If a total of $\$ 9,000$ is invested at an annual interest rate of 2% compounded monthly, which of the following expressions shows the amount of interest after 10 years?
A) $9000\left(1+\frac{2}{12}\right)^{10}-9000$
B) $9000\left(1+\frac{2}{120}\right)^{10}-9000$
C) $9000\left(1+\frac{2}{120}\right)^{120}-9000$
D) $9000\left(1+\frac{2}{1200}\right)^{120}-9000$

11

The graph of a circle in the $x y$-plane above intersects at four points with the x-axis and the y-axis. What is the value of k ?
A) 4
B) 5
C) 6
D) 7

12

If $f(x-3)=x^{2}+x+1$, which of the following represents $f(x)$?
A) $f(x)=x^{2}+x-4$
B) $f(x)=(x-3)^{2}+(x-3)+1$
C) $f(x)=(x+3)^{2}+(x+3)+1$
D) $f(x)=(x+3)^{2}+(x+3)+3$

13

If $3 p+5 \leq 15$, what is the greatest possible value of $6 p-5$?
A) 15
B) 25
C) 35
D) 85

14

Which of the following polynomials is divisible by $(x+1)$?
A) $x^{3}-1$
B) $x^{3}-x^{2}-x-1$
C) $x^{3}+x^{2}-x+1$
D) $x^{3}+x^{2}-x-1$

15

Week	$\mathbf{1}$	2	3	$\mathbf{4}$	5	6	7
Height (feet)	1.5	1.7	1.8	2.2	2.9	3.7	4.8

Students in a science class observed the growth of a plant over 7 weeks. The table above shows their observations. What is the average rate of change, in feet per week, of the plant from weeks 1 to 7 ?
A) 0.42
B) 0.47
C) 0.55
D) 0.58

16

Ashley and Bemard work at an electronic appliance store. Ashley is paid $\$ 200$ per week plus 5% of her total sales. Bernard is paid $\$ 325$ per week plus 2.5% of his total sales. If their weekly pay is the same, what is the dollar amount of their sales?
A) 5,000
B) 6,200
C) 7,500
D) 8,400

17

How does the graph of $f(x)=x^{2}-4 x+5$ compare with the graph of $g(x)=x^{2}$?
A) The graph of $g(x)$ is moved to the left 4 units and up 5 units.
B) The graph of $g(x)$ is moved to the right 4 units and up 5 units.
C) The graph of $g(x)$ is moved to the left 2 units and up 5 units.
D) The graph of $g(x)$ is moved to the right 2 units and up 1 unit.

18

In the figure above, the circles are tangent each other and the radii are in a ratio of $1: 2$. If the sum of their areas is 80π, what is the length of $\overline{A B}$?
A) 12
B) 16
C) 18
D) 24

In right triangle $A B C$ above, $A D=10$ and $B C=25$. If the value of $\sin \angle B C D$ is 0.6 , what is the area of triangle $B C D$?
A) 50
B) 75
C) 100
D) 150

20

If $p=a^{2}-4 a+8$, what is the least possible value of $p+6$?
A) 2
B) 4
C) 8
D) 10

$$
\begin{aligned}
& 80 \leq x \leq 100 \\
& 40 \leq y \leq 60
\end{aligned}
$$

The intervals of x and y are shown above. If $z=x-y$, which of the following represents all possible values of z ?
A) $|z-40| \leq 20$
B) $|z-40| \geq 20$
C) $|z-20| \leq 40$
D) $|z-20| \geq 40$

Which of the following functions could represent the graph of $f(x)$ shown in the $x y$-plane above?
A) $f(x)=\frac{1}{3}(x-3)\left(x^{2}-4 x+3\right)$
B) $f(x)=-\frac{1}{3}(x-3)\left(x^{2}-2 x-3\right)$
C) $f(x)=\frac{1}{3}(x+3)\left(x^{2}-4 x+3\right)$
D) $f(x)=-\frac{1}{3}(x+3)\left(x^{2}+4 x+3\right)$

$$
f(x)=(x-4)^{2}-64
$$

Which of the following is an equivalent form of the function above?
A) $f(x)=(x+3)(x-11)$
B) $f(x)=(x+6)(x-14)$
C) $f(x)=(x+4)(x-12)$
D) $f(x)=(x+6)(x-8)$

24

In the $x y$-plane above, a circle is tangent to the x-axis at R and the y-axis at P, and line ℓ passes through the points of tangency. If the area of the circle is 100π, what is the equation of line ℓ ?
A) $y=-x+5$
B) $y=-x+10$
C) $y=-x+50$
D) $y=-x+100$

$$
\begin{aligned}
& y=f(x) \\
& y=k
\end{aligned}
$$

In the system of equations above, k is a constant. The function $y=f(x)$ is shown in the $x y$-plane above for $-8 \leq x \leq 14$. On this closed interval, for how many values of k does the system have exactly 4 solutions?
A) 1
B) 2
C) 3
D) 4

26

Let the function f be defined by $f(x)=\sqrt{50-2 x^{2}}$. What are all the values of x for which $f(x)$ is a real number?
A) $x \geq 5$
B) $x \leq 5$
C) $-25 \leq x \leq 25$
D) $-5 \leq x \leq 5$

28

In the $x y$-plane, the graph of the function is a line with a slope of 5. If $f(a)=-4$ and $f(b)=32$, what is the value of $b-a$?
A) 6
B) 7.2
C) 8
D) 8.4

In the figure above, O and P are the centers of the circles. If the lengths of radii of the circles are each 10 , what is the area of the shaded region?
A) $50 \sqrt{3}$
B) $25 \sqrt{3}$
C) $\frac{25 \sqrt{3}}{2}$
D) $\frac{25 \sqrt{3}}{4}$

Questions 29 and 30 refer to the following information.

The domestic texting plan of an E-mobile telephone company is modeled by the graph in the $x y$-plane above.

29

Which of the following pairs of equations represents the graph of the domestic texting plan?
A) $\left\{\begin{array}{l}y=20, \quad x \leq 200 \\ y=0.05 x, \quad x>200\end{array}\right.$
B) $\left\{\begin{array}{l}y=20, x \leq 200 \\ y=20+0.05 x, x>200\end{array}\right.$
C) $\left\{\begin{array}{l}y=20, x \leq 200 \\ y=20+0.05(x-200), \quad x>200\end{array}\right.$
D) $\begin{cases}y=20, & x \leq 200 \\ y=30, & x>200\end{cases}$

If Jennifer uses 550 texts this month, what is her amount of money, in dollars, does she have to pay?
A) 20.00
B) 25.00
C) 32.50
D) 37.50

DIRECTIONS

For questions 31-38, solve the problem and enter your answer in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles are filled in correctly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded as 3.5 or $7 / 2$. (If $3|1|^{2}$ a is entered into the grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or truncated, but it must fill the entire grid.

A trapezoid ADCB is in the $x y$-plane above. If $A D=B C$, what is the slope of $\overline{A D}$?

32

If a and b are positive integers such that $\frac{a}{b}=0.48$.
If $150<b<200$, what is the value of $a+b$?

33

In the figure above, the cylindrical and cone-shaped containers have the same height of 10 inches and the same radius of 5 inches. If the cone-shaped container filled with water and then the water is poured into the empty cylindrical container, what will be the depth, in inches, of the water in the cylindrical container?

Note: Figure not drawn to scale.
In the $x y$-plane above, the graph of $y=2 x^{2}-19 x+9$ intersects the y-axis at P and the x-axis at R. What is the area of rectangle OPQR?

$$
\begin{aligned}
& y \geq x^{2}-8 x \\
& y \leq 2 x
\end{aligned}
$$

In the $x y$-plane, ordered pair (a, b) is the solution of the system of inequalities above. What is the maximum possible value of b ?

If the interval above is rewritten in the form $|x-a| \leq k$, what is the value of k ?

37

Mr. Trump drove to work in the morning at the average speed of 60 miles per hour. He returncd home in the evening along the same route and averaged 45 miles per hour. To the nearest tenth, what is his average speed, in miles per hour, for the entire trip?

In the figure above, quadrilateral $A F E D$ is a parallelogram and $\frac{B F}{E C}=\frac{1}{2}$. If the area of the parallelogram is 10 , what is the area of triangle $A B C$?

STOP

If you finish before time is called, you may check your work on this section only.
Do not turn to any other section in the test.

Test 10 Answers and Explanations

$\begin{gathered} \text { SECTION } \\ \mathbf{3} \end{gathered}$	1	2	3	4	5	6	1	88	9	10
	C	C	B	D	C	C	B	B	D	D
	11/	12	13	14.	15	16	\% 17	181	19	20.
	C	D	B	A	D	4.5	75	30	50	18
SFCTION 4	15	2	3	4,	, 8 ,	6 64	\% 7 ,	, 6 , ${ }^{\text {a }}$, \% ${ }^{\text {a }}$	16\%
	A	B	B	A	B	C	B	B	C	D
	11,	12.	12	14.	.18,	16,	17	488	19	20,
	A	C	A	D	C	A	D	D	B	D
				z		06				5064x
	A	C	C	B	B	D	A	B	C	D
		+2\%		$1+3 \times 2$		1-1,				$15 / 215$
	$\frac{7}{3}$	259	4	81	20	13	51.4	22.5		

PRACTICE TEST 11

Dr. John Chung's SAT Math

Math Test - No Calculator

25 MINUTES, 20 QUESTIONS

Turn to Section 3 of your answer sheet to answer the questions in this section.

DIRECTIONS

For questions 1-15, solve cach problem, cloose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 16-20, solve the problem and enter your answer in the grid on your auswer sheet. Please refer to the directions before question 16 on how to enter your answers in the grid. You may use any available space-in your test bouklet for sciatch work.

NOTE

1. The use of a calculator is not permitted.
2. All variables and expressions used represent real numbers unless ollerwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Untess otherwise indicated, the domain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

REFERENCE

$A=\pi r^{2}$
$C=2 \pi r$

$A=e v$

$V=6 w^{\prime}$

$V=\pi r^{2} h$

π
$c^{2}=a^{2}+b^{2}$

$V=\frac{4}{3} \pi r^{3}$

Special Right Triangles

$V=\frac{1}{3} \pi r^{2} h$

$y=\frac{1}{3} e^{e} w / 2$

The number of degrees of arc in a circle is 360 .
The number of radians of arc in a circle is 2π.
The number of the measures in degrees of the angles of a triangle is 180 .

$\frac{3}{2}+\frac{14}{2}=\frac{1}{2}$

1

$$
\frac{3}{4}(x-2)+7=12-\frac{1}{2}(x-2)
$$

What is the value of x in the equation above?
A) 4

$$
\frac{3}{4} x-\frac{3}{2}+7=12-\frac{1}{2} x+1
$$

B) 5
C) 6
D) 8

$$
\begin{aligned}
& \frac{3}{4} x+\frac{1}{2}=13-\frac{1}{2} x \\
& \frac{5}{4}=\frac{15}{2}
\end{aligned}
$$

$$
5\left(x^{2}-6\right)=x^{2}+34
$$

What are the solutions to the equation above?
A) $-\sqrt{34}$ and $\sqrt{34}$
B) $-2 \sqrt{6}$ and $2 \sqrt{6}$
C) -6 and 6

$$
5 x^{2}-30+x^{2}+3 x
$$

D) -4 and 4

$$
x^{2}=16
$$

$$
(x-14)
$$

4

Which of the following is equivalent to the expression $x^{3}+x^{2} y-x-y ?$
A) $(x+y)\left(x^{2}+1\right)$
B) $(x+y)\left(x^{2}-2 y\right)$
C) $(x y+1)\left(x^{2}+1\right)$
D) $(x+y)(x+1)(x-1)$

5

Which of the following values is a solution of $\frac{1}{5}(x-5)(x-3)<0$?

B) 3
C) 4

D) 5
$c\left(\frac{1}{5} x^{2} \cdot \frac{8}{5} x+3\right)<1$

$$
x^{2} 8 x+152-4
$$

2

6

$$
(x-5)(x+3)+10
$$

Which of the following is equivalent to the expression above?
A) $(x+1)^{2}+6$
B) $(x+1)^{2}-6$
C) $(x-1)^{2}+6$
D) $(x-1)^{2}-6$

7

In the figure above, the area of triangle $A B C$ is 96 . If $A D=9$ and $B D=15$, what is the length of $\overline{C D}$?
A) 7
B) 8
C) 9
D) 14

$$
\begin{gathered}
\frac{1}{2}(12)(9+x)=46 \\
6(6)
\end{gathered}
$$

8 $9+x+15$

Which of the following could be the equation for the graph shown in the ry -plane above?
(a) $y=(x+1)(x-1)^{2}(x-2)$
B) $y=(x-1)^{2}(x+1)(x+2)$
C) $y=(x+1)^{2}(x-1)(x-2)$
D) $y=-(x+1)^{2}(x-1)(x-2)$

PRACTICE TEST 11

Dr. John Chung's SAT Math

Math Test - No Calculator

25 MINUTES, 20 QUESTIONS

Turn to Section 3 of your answer sheet to answer the questions in this section.

DIRECTIONS

For questions $1-15$, solve cach problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet For questions $\mathbf{l} 6-20$, solve the problen and enter your answer in the grid on your answer sheet. Please refer to the directions before question 16 on how to enter your answers in the grid. You may use any-available space in your test booklet-for scratch work.

NOTE

1. The use of a calculator is not permitted.
2. All variables and cxpressions used represent veal numbers unless otherwise indicated.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the domain of a given function f is the sel of all real numbers x for which $f(x)$ is a real number.

RERERENCE

$A=\pi r^{2}$
$C=2 \pi{ }^{\prime}$
$A^{4}=8$

$A=\frac{1}{2} b h$

a
$c^{2}=a^{2}+b^{2}$

$V=\frac{4}{3} \pi r^{3}$

Special Right Triangles

$Y=\frac{1}{3} \pi r^{2} h$

$F=\frac{1}{3} \mathrm{~cm}$

The number of degrees of arc in a circle is 360 .
The number of radians of are in a circle is 2π.
The number of the measures in degrees of the angles of a triangle is 180 .

3
Albert and Bunny are 100 feet apart. Each person walks at a steady pace toward the other. If Albert walks at a constant rate of 3 feet per second and Bunny walks at a constant rale of 4 feet per second, how far will Albert walk, in feet, when they meet?
A) $\frac{100}{7}$
B) $\frac{300}{7}$
C) $\frac{400}{7}$
D) 70

4
Which of the following is equivalent to the expression $x^{3}+x^{2} y-x-y ?$

$$
1+2+
$$

A) $(x+y)\left(x^{2}+1\right)$
B) $(x+y)\left(x^{2}-2 y\right)$
C) $(x y+1)\left(x^{2}+1\right)$
D) $(x+y)(x+1)(x-1)$

5.

Which of the following values is a solution of $\frac{1}{5}(x-5)(x-3)<0$?
A) -4
B) 3
C) 4
D) 5

$$
\begin{aligned}
& \frac{1}{5} x^{2}-8 \\
& x^{2}-8 x+15
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{5}\left(x^{2}\right)(x+1)<0 \\
& \frac{1}{5}\left(x^{2}-8 x+15\right)<0 \\
& \frac{1}{5} x^{2}-\frac{8}{5} x+3-1
\end{aligned}
$$

$$
(x-5)(x+3)+10
$$

Which of the followitg is equivalent to the expression above?
A) $(x+1)^{2}+6$
B) $(x+1)^{2}-6$
C) $(x-1)^{2}+6$
D) $(x-1)^{2}-6$

7

In the figure above, the atea of triangle $A B C$ is 95 . If
$A D=9$ and $B D=15$, what is the length of $\overline{C D}$?
A) 7
B) 8
C) 9
D) 14

$$
\frac{1}{2}(12)(a+x)=46
$$

8 616
) 8

Which of the following could be the equation for the graph shown in the x y-plane above?
(A) $y=(x+1)(x-1)^{2}(x-2)$
B) $y=(x-1)^{2}(x+1)(x+2)$
C) $y=(x+1)^{2}(x-1)(x-2)$
D) $y=-(x+1)^{2}(x-1)(x-2)$

9 J

$3 x+4 y=12$

The graph of the equation above in the ry-plane is a line, e Line m is perpendicular to line ℓ at point (a, b) and passes through the origin. Which of the following is the value of a ?
A) 1.44
B) 4.8
C) 5
D) 5.4

$$
\begin{gathered}
\frac{b-0}{a-0} \frac{4}{3} \quad(0,0) \\
3 b=4 a
\end{gathered}
$$

10

The function f is defined by $f(x)=|x+5|-4$. If $f(0)=f(k)$, what is the value of k ?
A) -10
B) -5
$10+51-4$
C) 4
D) 10

$$
\begin{aligned}
& 1=|x+\lambda| \\
& 5
\end{aligned}
$$

11

If the graph of function $y=f(x)$ has a vertex at point $[(-2,5)$, which of the following is the vertex of the graph of function $y=f^{\prime \prime}(x+3)-8$?
A) $(-5,-8)$
B) $(-5,-3)$
C) $(1,-8)$
D) $(1,-3)$

12

For $x>0$, which of the following is equivalent to

$$
\frac{\frac{x}{x+3}-\frac{4}{x}}{1-\frac{1}{x+3}} ?
$$

A) $\frac{x^{2}-4 x-3}{x^{2}+2 x}$
B) $\frac{x^{2}-6 x-12}{x^{2}+2 x}$
C) $\frac{x+6}{x}$
D) $\frac{x-6}{x}$

If $\frac{\sqrt[5]{a^{6}} \cdot \sqrt[5]{a^{4}}}{\sqrt[3]{a^{2}}}=a^{n}$ for all values of a, what is the value of n ?
A) $\frac{3}{4}$
B) $\frac{4}{3}$
C) $\frac{12}{7}$
D) $\frac{12}{5}$

14

Olivia got $\$ 2,000$ trom her parents to start her college fund. She is opening a new savings account and the bank offers a 2.4 percent anmual interest rate, compounded quarterly. Which of the following functions best represents the anount or money, in dollars, in Olivia's account in 15 years?
A) $2,000(1.024)^{15}$
B) $2,000(1.024)^{100}$
C) $2,000(1.006)^{15}$
D) $2,000(1.006)^{60}$

If a function is defined by $f(x+1)=x^{2}-1$, which of the following represents $f(x-3)$?
A) $f(x-3)=(x-3)^{2}-1$
B) $f(x-3)=(x-3)^{2}-(x-3)$
C) $f(x-3)=(x+4)^{2}-1$
D) $f(x-3)=(x-4)^{2}-1$

DIRECTIONS

For questions $16-20$, solve the problem and enter your answer' in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you wite your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will reccive credit only if the circles are filled in correctly.
2. Mark no more than one circle in any column.
3. No question has a negative answer:
4. Some problems may have more than one abswer:
5. Nixed numbers such as $3 \frac{1}{2}$ must be gridded as 3.5 or $7 / 2$. (If $\sqrt[3 \mid 1 / 2]{\mid / 6 / 2}$ is entered into the grid, it will be interpteted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either younded or tiuncated, but it must fill the entire grid.

In the figure above, point E is on diagonal $\overline{B D}$ and $D E=3 B E$. If the area of the shaded region is 18 , what is the arca of the rectangle $A B C D$?

17

Io the figure above, measure of $\angle A D B=60^{\circ}$; measure of $\angle A C D=30^{\circ}$, and $C D=10 \sqrt{3}$. What is the length of $\overline{A B}$?

18

$$
\frac{x^{2}}{2}-\left(k^{2}-1\right) x+k=0
$$

In the equation above, k is a constant. If the product of the roots is 10 , what is the sum of the roots?

19

$$
\begin{gathered}
2 x+y=5 \\
5 x-2 y=8
\end{gathered}
$$

If (a, b) is a solution to the system of equations above, what is the value of $\frac{a+b}{a}$?

20

$$
f(x)=x^{5}+k^{2} x^{3}+3 k x-11
$$

In the function f above, k is a positive constant. If $x-1$ is a factor of $f(x)$, what is the value of k ?

STOP

If you finish before time is called, you may check your work on this section only. Do not turn to any other section in the test.

1

Ashley and Beth drove from city A to city B in exactly 5 hours, not taking rest stops. Ashley drove up to the area localed halfway between the two cities at the average speed of 40 miles per hour and then Belh drove the other half at an average speed of 60 miles per hout. How many hours did Beth drive on their trip?
A) 1
B) 2
C) 3
D) 4

2

Which of the following is equivalent to
$(x+y)^{2}-(x-y)^{2} ?$
A) 0
B) $4 x y$
C) $x^{2}-y^{2}$
D) $2 x^{2}+2 y^{2}$

3

The combined weight of Adan and Bradley is 165 pounds. The combined weight of Bradley and Chris is 185 pounds. The coubined weight of Chris and Adam is 175 pounds. How many pounds does Brodley weigh?
A) 80
B) 85
c) 87.5
D) 92.5

4

$$
\frac{1}{x-5}=\frac{x}{x^{2}-25}
$$

What is the solution of the equation shown above?
A) -10
B) 5
C) 10
D) No solution

$$
5(x+2)^{2}-15=45
$$

Which of the following is a value of x that satisfies the equation above?
A) 4
B) $-2+2 \sqrt{3}$
C) $-2-2 \sqrt{2}$
D) $2+2 \sqrt{2}$

6

In the $x p$-planc above, lines t and m are perpendicular to each other at point P. If the graph of line m intersects the x-axis at point $(-4,0)$, what is the area of $\triangle P Q R$?
A) 84
B) 72
C) 42
D) 36

In the dot plots above, the four data sets are fund-raising totals in dollars for five clubs in Mr'. Lee's class. Which data set appears to have the smallest standard deviation?
A) Club 1
B) Club 2
C) Club 3
D) Club 4

8

If $x^{2}+5 x=3$, what is the value of $(x-1)(x+6)+4$?
A) 1
B) 2
C) 3
D) 4

In the figure above, circles O and P are tangent to line ℓ and are tangent each other. If the radii of circles O and P are 4 and 9 respectively, what is the area of quacrilateral $O P Q R$?
A) 39
B) 78
C) 108
D) 156

Questions 10 and 11 refer to the following information.

Ordered Details

20 Sandwiches
20 Soups
5 Salads
4 Sodas
Delivery Fee: 5%
Total amount: $\$ 226.17$
Megan ordered lunch for her birthday parly and her bill is shown above. The delivery fee was calculated as a percent of the cost of Megan's ordes. The tolal amount is the sum of the cost of Megan's order and the delivery fee.

10

\qquad \because

What is lise cosl of Mcgan's ordert?
A) $\$ 200$
B) $\$ 215.40$
C) $\$ 225.50$
D) $\$ 250$

11

The total amount Megan paid for sandwiches and salads was $\$ 134$. If the combined cosl of one sandwich and one salad is $\$ 8.50$, what is the cost of one kardwich?
A) $\$ \leq .05$
B) $\$ 6.10$
C) $\$ 7.25$
D) $\$ 7.50$

12

If a and b are positive integers and $g\left(e^{d a}\right)=\frac{2^{2 b}}{2^{3}}$, what is b in tenns of a ?
A) $a+1$
B) $a+2$
C) $2 a+1$
D) $2 a+3$

13

There gre two different means, the arithmetic, $A=\frac{a+b}{2}$ and the hamonic, $H=\frac{2 a b}{a+b}$, If the arithmetic mean is equal to the hamonic mean, which of the following must be tue?
A) $a=0$ and $b=0$
B) $a b=0$
C) $a=1$ and $b=1$
D) $a=b$

14

The figure above shows the graph of $y=f(x)$. Which of lhe following could be the graph of $y=\frac{1}{2} f(x+1) 7$
A)

C)

B)

D)

15

$$
y=a x+b
$$

$$
5 x-3 y=a
$$

In the system of equations above, a and b are constants. If the system has infinitely maty solutions, what is the value of b ?
A) -3
B) $-\frac{9}{5}$
C) $-\frac{5}{9}$
D) $\frac{9}{5}$

16

$$
K=\frac{1}{2} m v^{2}
$$

The kinetic energy of an object in motion is given by the equation above, where K is the kinetic energy of the object in joules, M is the mass of the object in kilograms, and v the speed of the object in meters per second. When the object is moving at a meters per second with a mass of b kilograms, the kinetic energy is 98 joules. What is the kinetic energy in joules, when the object is moving at $3 a$ meters per second with a mass of $2 b$ kilograms?
A) 1764
B) 1560
C) 882
D) 441

If $r s^{2} u^{3} u^{3}>0$ and $t<0$, which of the following must be true?
A) $r<0$
B) $2 a t<0$
C) $r>0$
D) $t>0$

18

The Maxim Teleplone Company charges k cents for the first 1 minutes of a call and charges for any additional lime at the rate of r cents per minule. If a cerlain customer pays $\$ 10$, which of the following could be the length of that phone call in minutes?
A) $\frac{1000+r k}{r}$
B) $\frac{1000+r k}{r}$
C) $\frac{1000-k-1}{r}$
D) $\frac{1000-k+r i}{r}$

CLASSES STUDENTS ARE TAKING

The circle graph aboye shows the distribution of the subjects in a cerlain high school. If Uhere are 136 more students taking dgebra than geometry, how many more students are taking geomerty than calculus?
A) 36
B) 40
C) 42
D) 84

20

A fanmer can jlow a bield in k days. How many days will it take two famers working at the same rate to plow a field two times larger?
A) $2 k$
B) k
C) $\frac{k}{2}$
D) $\frac{k}{4}$

21

In the figure above, a rectangle is inscribed in a part of a circle. If the length of $\overrightarrow{A D}$ is 4 and the length of $\overline{D C}$ is 3 , what is the area of the shaded region?
A) $25 \pi-12$
B) $\frac{25 \pi-12}{2}$
C) $\frac{25 \pi-24}{2}$
D) $\frac{25 \pi-48}{4}$

22

How does the graph of $f(x)=(x+2)(x-4)$ compare with the graph of $g(x)=x^{2}$?
A) The grepli of $g(x)$ is moved to the lef 1 unit and up 9 units.
B) The graph of $g(x)$ is moved to the right 1 unt and down 8 units.
C) The graph of $g(x)$ is moved to the left 1 whit and down 9 units.
D) The graph of $g(x)$ is moved to the right I unit and down 9 units.

Note: Figure not drawn to scale.
In the figure above, the right regular pyramid has a square base und at four triangular faces are congruent. If $A B=4$ and the total surface area of the pyramid is 56 , what is the length of $\overline{D E}$?
A) 4
B) 5
C) $5 \sqrt{2}$
D) 6

If $2 a+b=4$ and $a b=-3$, what is the value of $|2 a-b|$?
A) 4
B) $2 \sqrt{10}$
C) $6 \sqrt{3}$
D) 8

HEIGHT OF A TREE

Age (in years)	5	6	7	8	9
Height (in meters)	6	7	7.6	8.1	8.2

Which of the following graphs best represents the information in the table above?
A)

B)

C)

D)

26

Note: Figure not drawn to scale.
In the right triangle $A B C$ above, $A B=9$, and $B C=12$. If D is the nidpoint of $\overline{B C}$, what is the area of triangle $C D E$?
A) 27
B) 13.5
C) 9
D) 8.64

27

Note: Figure not drawn to scale. In the $x y$-plane above, the equation of line ℓ is $y=\frac{1}{2} x+10$ and the area of $\triangle A B C$ is 36 . What is the length of $\overline{A B}$?
A) 6
B) 12
C) 15
D) 16

28

Which of the following is thue about the graph of $f(x)=3(\sqrt{8 x-4}+2)$ compared with the graph of $g(x)=3 \sqrt{8 x}$?
A) The graph of $g(x)$ is moved to the left by 4 units and up 2 units.
B) The graph of $g(x)$ is moved to the right by 4 units and up 2 units.
C) The graph of $g(x)$ is moved to the sight by 0.5 unit and up 2 units.
D) The graph of $\mathrm{g}\left(x^{\prime}\right)$ is moved to the right by 0.5 unit and up 6 unils.

29

$$
\begin{aligned}
& x y^{\prime}=\sqrt[3]{32} \\
& \frac{x}{y}=\left(\frac{1}{2}\right)^{\frac{1}{3}}
\end{aligned}
$$

In the sysien of equations, which of the following could be the value of y ?
A) 1
B) 1.5
C) 2
D) 4

26

Note: Figure not drawn to scale.
In the right triangle $A B C$ above, $A B=9$, and $B C=12$. IC D is the midpoint of $\overline{B C}$, what is the area of triangle $C D E$?
A) 27
B) 13.5
C) 9
D) 8.64

27

Note: Figure not drawn to scale.
In the $x y$-plane above, the equation of line ℓ is $y=\frac{1}{2} x+10$ and the area of $\triangle A B C$ is 36 . What is the lengln of $\overline{A B}$?
A) 6
B) 12
C) 15
D) 16

23

Which of the following is tue about the graph of $f(x)=3(\sqrt{8 x-4}+2)$ compared with the graph of $g(x)=3 \sqrt{8 x}$?
A) The graph of $g(x)$ is moved to the left by 4 units and up 2 units.
B) The graph of $g(x)$ is moved to the right by 4 units and up 2 units.
C) The graph of $g(x)$ is moved to the right by 0.5 unit and up 2 units.
D) The graph of $g(x)$ is moved to the right by 0.5 unit and up 6 units.

29

$$
\begin{aligned}
& x=\sqrt[3]{32} \\
& \frac{x}{y}=\left(\frac{1}{2}\right)^{\frac{1}{3}}
\end{aligned}
$$

In the sysiem of equations, which of the following conld be the value of y ?
A) 1
B) 1.5
C) 2
D) 4

30
For the quadratic function $f(x), f(4)=8$. If $0 \leq x \leq 3$ is the solution to the inequality $f(x) \leq 0$, what is the value of $f(5)$?
A) 10
B) 12
C) 16
D) 20

DIRECTIONS

For questiuns 31-38, solve the problem and enter your answer in the grid, as described below, on the abswer sheet.
L. Allhough trot requited, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credil only if the circles are filled in cotrectly.
2. Mark no more than one circle in any column.
3. No guestion has a negative answer.
4. Some probtems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ inusi be gridded as 3.5 or $7 / 2$. (18
 gric, it will be intepreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you oblain a decimal answer with more digits than the grid can accommodate, it may be either rouncted or truncated, but it must fill the entire grid.

Acceptable ways to grid $\frac{2}{3}$ are:

Answer: 201
Fither position is conrect.

Note: Yout may start your answers in any column, space permitting.
Columns you don't need to
use should be lef: blauk.

$$
x^{3}-3 x^{2}+8 x-a=(x-2)\left(x^{2}-x+b\right)
$$

In the equation above, a and b are constants. If the equation is tue for all real values of x, what is the value of b ?

32.

$$
x^{2}-k x+k-6=0
$$

In the equation above, k is a constant and a and b are the solutions to the equation. If $a+b=12$, what is the watue of $a b$?

33

What is the distance between the points of intersection of the curves $y=x(x-4)$ and $y=x+6 ?$ (Round your answer to the nearest tenth.)

Nole:Figure not drawn to scale.
In the $x y$-plane above, the parabota $\mathrm{j}=-\mathrm{k} x^{2}+\mathrm{I}$
intersects the x - and y-axes at the points A, B, and C. If $\triangle A B C$ is an equilateral triangle, what is the value of $k ?$

35

$$
\begin{aligned}
& y \leq-x^{2}+4 x+5 \\
& y \geq-x+5
\end{aligned}
$$

In the $x y$-plane, if a point with coordinates (a, b) lies in the solution set of the system of inequalities above, what is the maximum possible value of b ?

In the x-plane ahove, liue ℓ is tangent to the graph of circle O and the value of $\sin \angle O R P$ is 0.6 . If the area of $\triangle O P R$ is 54 , what is the radius of the circle?

In the $x y$-plane above, poinls O, P, and Q lie on the graph of $y^{t}=2 x^{2}$. If the area of triangle $O P Q$ is 54 , what is the lengto of $\bar{P} \bar{Q}$?

38

Note:Figure not drawn to scale.

The figure above shows three isosceles right triangles with sides of length $4, a$, and 25 , respectively. If points A, B, and C lic on line ℓ, what is the value of a ?

STOP

If you finish before time is called, you may check your work on this section only.
Do not turn to any other section in the test.

PRACTICE

TEST

 12Dr. John Chung's SAT Math

Math Test - No Calculator

25 MINUTES, 20 QUESTIONS

Turn to Section 3 of your answer sheet to answer the questions in this section.

DIRECTIONS

For questions 1-15, solve each problem, choose the best answer from the choices provided, and fill in the corresponding circle on your answer sheet. For questions 16-20, solve the problem and enter your answer in the grid on your answer sheet. Please refer to the directions before guestion 16 on how to enter your answers in the grid. You may use any available space in your test booklet for scratel worl.

NoIE

1. The use of a caleulator is not permitted.
2. All variables and expressions used represent real numbers unless otherwise indicaled.
3. Figures provided in this test are drawn to scale unless otherwise indicated.
4. All figures lie in a plane unless otherwise indicated.
5. Unless otherwise indicated, the conain of a given function f is the set of all real numbers x for which $f(x)$ is a real number.

RETERENCE

$A=\pi r^{2}$
$C=2 \pi r$

$A=P w$

$A=\frac{1}{2} b t$

$c^{2}=a^{2}+b^{2}$

Special Right Triangles

$V=\frac{1}{3} \pi r^{2} h$

$\dot{V}=\frac{1}{3} \rho / h$
The number of degrees of arc in a circle is 360 .
$V=\frac{4}{3} \pi r^{3}$

$$
V=\pi r^{2} h
$$

The number of radians of arc in a circle is 2π
The number of the measures in degrees of the angles of a triangle is 180 .

1

If $a^{2} b-4 a b+42=0$ and $2 a+8=14$, what is the value of b ?
A) 14
B) 12
C) 10
D) 8

2

If $a+2 b=\frac{1}{2}$ and $a-2 b=\frac{1}{3}$, what is the value of $6 a^{2}-24 b^{2}$?
A) $\frac{1}{3}$
B) $\frac{1}{2}$
C) 1
D) 2
3.

If $a=3+2 i$ and $b=3-2 i$, what is the value of $a^{2}-2 a b+b^{2}$? $($ Note: $i=\sqrt{-1})$
A) -16
B) -4
C) 9
D) 36

4

$$
\begin{aligned}
& \frac{\sqrt{x}}{2}+\sqrt{y}=5 \\
& \sqrt{x}-\frac{\sqrt{y}}{2}=-\frac{1}{2}
\end{aligned}
$$

If (a, b) is a solution to the system of equations above, what is the value of a ?
A) $\frac{8}{5}$
B) $\frac{9}{5}$
C) $\frac{64}{25}$
D) $\frac{81}{25}$

5

Total Cost of Renting a Car by Days

The graph above displays the ofal cost C, in dollars, of renting a car for d days. If Nigel rents a car for 21 days for his summer lrip, what is the lotal rental cust?
A) $\$ 600$
B) $\$ 650$
C) $\$ 700$
D) $\$ 750$

6

In the figureabove, the area of square $A F I E$ is 9 times the area of square $H / G C$. What perent of squate $A B C D$ is shaded?
A) 56.25%
B) 62.5%
C) 67.5%
D) 70.5%

Questions 7-8 refer to the following information.
A survey of 700 randomly selected people aged 15 through 20 in a certain town was conducted to gather data on how they prefer to see movies. The data are shown in the table below.

	DVD	TV provider	Smart phone downloads	Total
Ages $15-16$	60	80	100	240
Ages $17-18$	40	50	120	210
Ages $19-20$	10	40	200	250
Total	110	170	420	700

7.

If a person is chosen at random from those under 18 years old, which of the following is closest to the probability that the person preferred smartphone downloads?
A) 0.49
B) 0.52
C) 0.54
D) 0.56

8

How inany people prefer smartphone-dowuluads or are aged between 15 and 16 years old?
A) 100
B) 560
C) 660
D) 665

9

$$
f(x)=2 x^{2}+k x-10
$$

For the function f defined above, k is a constant. If $f(-2)=f(8)$, what is the value of k ?
A) -12
B) -6
C) 15
D) 12

10

If the graph of $y=x^{2}$ is translated up 3 units and Hight 5 units, what is the equation of the new graph?
A) $y=x^{2}-3 x+5$
B) $y=x^{2}-6 x+14$
C) $y=x^{2}+10 x+5$
D) $y=x^{2}-10 x+28$

11

Note: Figure not drawn to scale.
Triangle $A B C$ above is isosceles with $A B=B C$, and the ratio of $D E$ to $D F$ is 3.2 . If the area of triangle $A B C$ is 78 , what is the area of trjangle $A B D$?
A) 46.8
B) 54
C) 60
D) 60.25

12

$$
P(x)=2\left(x^{2}+c x+2\right)-5(x-b)
$$

In the polynomial $P(x)$ defined above, a and b ate constants. If $P(x)$ is divisible by $(x-1)$ and $(x-3)$, what is the value of a ?
A) -12
B) -6
C) 6
D) 12

13

$$
\begin{aligned}
& y=x^{2}-2 x \\
& y=x+k
\end{aligned}
$$

In the system of equations defined above, k is a constanl. If the system has no solution, which of the following could be the vahue of k ?
A) 1
B) 0
C) -2
D) -3

14

The distance between two parallel lines is defined as the leugth of the perpendicular segment between them. What is the distance between $y=x$ and $y=x-4 ?$
A) $\sqrt{2}$
B) 2
C) $2 \sqrt{2}$
D) 4

Note: Figure not drawn to scale.

In the $x y$-plane above, the graph of a quadratic function $y=f(x)$ intersects the x-ixis at points O and Q, and has a vertex at point P. If line ℓ passes through paints P and Q, what is the y-intercept of line ℓ ?
A) 8
B) 10
C) 12
D) 15

DIRECTIONS

For questions 16-20, solve the problem and enter your enswer in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you wrile your answer in the boxes at the top giod in \rightarrow ? of the columns to help you fill in the circles result. accurately. You will receive credit only if the circles are filled in correctly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded is 3.5 or $7 / 2$. af $\frac{3|1|}{\sqrt{6}\left|\frac{2}{2}\right|}$ entered into the grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or truncaled, but it must fill the entire grid.

Acceptable ways to grid $\frac{2}{3}$ are:

Answer: 201
Either position is correct.

Note: You may start your answers in any column, space permitting. Columns you don't need to use should be left blatk.

In the figure of a regular pentagon above, $\overline{C D}$ is parallel to $\overline{A B}$. If x° is the measure of $\angle D C E$, what is the valte of x ?

17

$$
\frac{\sqrt{x^{2}}+2 \sqrt{x}}{6}=8
$$

If $x>0$, what is the solution to the cquation above?

18

In the triangle above, the sine of $\angle B A C$ is 0.6 and the area of triangle $A B C$ is 216 . What is the lengt of $\overline{B C}$?

A surveyor drew the diagram above to find the distance across a pond. If $A B=150$ meters and $A D=90$ meters, what is the distance, in meters, from point B to point C ?

20

$$
\begin{aligned}
& x^{2}+y^{2} \leq 100 \\
& y \leq x+2
\end{aligned}
$$

In the $x p$-plane, if a point with coordinates (a, b) lies in the solution set of the systern of inequalities above, what is the maximum possible valuable of b ?

STOP

If you finish before time is cailed, you may check your work on this section only. Do not turn to any other section in the test.
C) $C(x)=5+0.75 x$
D) $C(x)=5(x+0.75)$

Questions 2-3 refer to the following information.

	Boys	Girls	Total
Iunior	20		
Senior		17	
Tutal	40		64

The incomplete table shows the distribution of grades and gender for 64 students who entered an essay contest.

2

If the contest winner will be selected at random, what is the probability that the winker will be a senior?
A) $\frac{29}{64}$
B) $\frac{32}{64}$
C) $\frac{37}{64}$
D) $\frac{47}{64}$

3

How many girls or junions are entered in the essay contest?
A) 7
B) 17
C) 44
D) 53
-
\qquad

The line graph above shows the monthly cunfall fiom May to October in City K. Wiat is the average tate of change of raindall, in inches per month, from May to September?
A) 1.5
B) 2
C) 2.5
D) 3

5

$$
k=\sqrt{\frac{a b}{a+b}}
$$

In the equation above, which of the following represents b in terns of a and k ?
A) $b=\frac{a k}{a-k}$
B) $b=\frac{a k}{a+k}$
C) $b=\frac{a k^{2}}{a-k}$
D) $b=\frac{a k^{2}}{a-k^{2}}$

$$
6 \text { 6. } \begin{gathered}
C(x)=200 x+150 \\
R(x)=-0.5 x^{2}+600 x+100
\end{gathered}
$$

In the equations above, a company produces x units of a product per month, where $C(x)$ represents the total cost and $R(x)$ represents the total revenue for the month. The prolit is the differchice between revenue and the cost where $P(x)=R(x)-C(x)$. For What value of x will the company create the maximum profit for the monlh?
A) 200
B) 400
C) 600
D) 1200

$$
x^{3}-3 x+k=(x-1)\left(c x^{2}+b x+c\right)
$$

In the equation above, a, b, c, and k are constants. If the equation is true for all values of x, what is the value of c ?
A) 4
B) 2
C) -2
D) -4

A car traveled at an average speed of p miles per hour for h hours and consumed fiel at a rate of m miles per gallon. How many gallons of fuel did the car use for the trip?
A) $\frac{p}{m}$
B) $p h m$
C) $\frac{p h}{m}$
D) $\frac{m}{p h}$

$$
f(x)=(x+a)^{2}-36
$$

In the function f above, a is a constant. If sum of the zeros of the function is -10 , which of the following is the product of the zeros of the function?
A) -36
B) -26
C) -11
D) 26
19.

In the cylinder above, r is the radius of the base and 4 is the height of the cylinder. If the volume of the cylinder is equal to the surface area of the cylinder. Which of the following is tue about the cylinder?
A) $r=\frac{h}{2}$
B) $r=\frac{2 h}{h-2}$
C) $r=\frac{h+2}{h}$
D) $r=\frac{h-2}{h}$

11

In triangle $A B C$, measure of $m \angle A+m \angle B=90^{\circ}$. Which of the following is always true?
A) $\sin \angle A=\sin \angle B$
B) $\cos \angle A=\cos \angle B$
C) $\sin \angle A=\cos \angle B$
D) $\tan \angle A=\tan \angle B$

12

Omega-3 in five products

The graph above shows the amount of omega-3 supplied by five different products $A, B_{5} C, D$, and E. The cost of the products A, B, C, D, and E are $\$ 40,00, \$ 50.00$, $\$ 55.00, \$ 58.00$, and $\$ 62.00$, respectively. Which of the five producis supplies the most omega- 3 per dollars?
A) A
B) C
C) D
E) E

Questions 13-14 refer to the following information.
Near the surface of the earth, the speed (w) of an object falling freely from rest and the distance(s) if falls during time t, where g is 9.8 meters $/ s^{2}$, can be found as follows.

$$
v(f)=g t \text { and } s(t)=\frac{1}{2} g t^{2}
$$

13

When an object lalls freely near the earth, what is the distance traveled by the object during the time interval I second to 2 seconds?
A) 19.6 meters
B) 18.2 meters
C) 14.7 meters
D) 12.6 meters

14

When un object falls freely fear the carth, what is the average speed, in meters per second, during the lime interval 2 seconds to 4 seconds?
A) 9.8
B) 19.6
C) 29.4
D) 39.2

Graphs of the quadratic functions f and g are shown in the $x y$-plane above. For which of the following values of x does $f(x)+2 g(x)=0$?
A) 1
B) 3
C) 3.5
D) 5

16
Yellow Cab of Charleston charges $\$ 5.00$ for the first two miles and 50 cents for each additional $\frac{1}{5}$ of a mile. If Peter paid a yellow Cab $\$ 25,00$ for his trip, how many miles did he travel for the trip?
A) 6 miles
B) 8 miles
C) 10 miles
D) 12 miles

17

Q世

$$
y=3^{\left(-x^{2}+8 x-12\right)}
$$

In the equation above, what is the maximum value of y ?
A) 27
B) 81
C) 243
D) 729

18

In rectangle $A B C D$ above, $A B=8, B E=4, F D=6$, and $B C=20$. 抽 $\overline{B D}$, and $\overline{E F}$ infersect all point G, what is the area of theshaded region?
A) 18.4
B) 20.8
C) 36.8
D) 41.6

19

In the figure above, three identical circles are tangent to each other and are inscribed in a larger circle. $\overrightarrow{A B}$ is the diameter of the larger circle. If the area of the shaded region is 15 , what is the atea of the larger circle?
A) 27
B) 39.2
C) 42
D) 45

20

Note: Frgare :oll drawn to scale.
In the ry-plane abowe, vertices of trangle $A B C$ are lying on the graph of $y=-x^{2}+k$, where I is a constant. If the area of triangle $A B C$ is 27 , what is the value of k ?
A) 3
B) 9
C) 18
D) 27

24

The sum of four numbers is 2,835 . One of the numbers, a, is 25% more than the sum of the other three numbers. What is the average of the other tiree numbers?
A) 365
B) 420
C) 475
D) 600

22

Whel the graph of $y=x^{2}$ is moved to the right 3 units and down 4 units, which of the following is the equation of the resulting graph?
A) $y=(x-1)(x-5)$
B) $y=(x+1)(x-4)$
C) $y=(x-2)(x-4)$
D) $y=(x+2)(x-2)$

23

For a quadratic function $f(x)=x^{2}+b x+c$ in the $x y$-plane, $f(2)=f(6)=4$. What is the value of c ?
A) 4
B) 8
C) 12
D) 16

24

$$
\begin{aligned}
& y=(x-5)^{2} \\
& y=k
\end{aligned}
$$

In the system of equations above, k is a constant. If the system has two points of intersection and the dislance between these two points is 10 , what is the value of k ?
A) 20
B) 25
C) 30
D) 35

25

$$
x^{2}-6 x+2=0
$$

If a and b are the roots of the equation above, what is the value of $(a+1)(b+1)$?
A) 9
B) 10.5
C) 11
D) 12

26

For a polynomial $p(x)$, the remainder when $p(x)$ is divided by $(x-1)$ is 2 , and the remainder when $p(x)$ is dividec by $(x+1)$ is -4 . If $p(x)$ is divided by $\left(x^{2}-1\right)$, what is the reminder?
A) $2 x+1$
B) $3 x-1$
C) $4 x+1$
D) -8

27

If $\cos (3 x+20)^{\circ}=\sin (x+10)^{\circ}$, what is the value of $\sin (2 x)^{\circ} ?$
A) $\frac{1}{\sqrt{2}}$
B) $\frac{1}{2}$
C) $\frac{\sqrt{3}}{2}$
D) $\sqrt{3}$

If the function f is defined by $f(x-1)=x^{2}-1$, which of the following represents $f(x)$?
A) $f(x)=x^{2}$
B) $f(x)=x^{2}+1$
C) $f(x)=x^{2}+2 x$
D) $f(x)=x^{2}+2 x-1$

29

$$
\begin{aligned}
& y>-2 x+a \\
& y<2 x+b
\end{aligned}
$$

In the $x y$-plane, if $(-1,2)$ is a solution to the system of inequalities above, which of the following must be true about relationship between a and b ?
A) $a+b>0$
B) $a+b<0$
C) $a-b>0$
D) $a-b<0$

The gmph of a circle, whose equation is $x^{2}+y^{2}=100$, is shown in the $x y$-plane above. Tf the graph of $y=x+k$, where k is a constant, is tangent to the graph of the circle, which of the following is closest to the vallue of k ?
A) 12.03
B) 14.14
C) 15.05
D) 17.31

DIRECTIONS

For questions 31-38, solve the problem and enter your answer is the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes al the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles are filled in correctly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridiled as 3.5 or $7 / 2$. (lf $\left.\quad \frac{3}{10} \right\rvert\, \frac{1}{10}$ entered into the grid, in will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$,
6. Decimal answers: If you obtain a decirmal answer with more digits than the grid can accommedate, il may be either rounded or truncated, but it must fill the entire grid.

Acceptable ways to gid $\frac{2}{3}$ are

Answer: 201
Either position is correct

Note: You may start your answers in any column, space permitting. Columns youd don't need to use should be left blank.

31

In the figure above, the radius of circle O is 10 . If the measure of $\angle B A C$ is 30°, what is the length of $\overline{A D}$?

32

If the graph of $f(x)=x^{2}-2 x+k$ intersects the line $f(x)=3$ at exactly one point, what is the value of k ?

In the x-plane above, if line ℓ passes through point P; what is the value of k ?

34

For $i=\sqrt{-1}, \quad a+b+(a b) i=4+2 i$, where a and b are real numbers. What is the value of $a^{2}+b^{2}$?

35

\square *

\qquad ?

The mean score of 10 students of an algebra class was 8.5. When two new students enrolled, the mean increased to 86 . What was the average of the new students?

If $f\left(\frac{x}{5}\right)=x^{2}-3 x+1$, what is the value of $f(-1)$?

In the fgure above, $A B C D$ is a square and $A B=18$. If M is the midpoint of $\overline{A D}$, what is the area of $\triangle A B E ?$

38

In the figure above, $A D=4$, measure of $\angle B A D$ is 45°, and measure of $\angle B C D$ is 30°. What is the area of triangle $A B C$? (Round your answar to the-nearest tenth)

STOP

If you finish before time is called, you may check your work on this section only.
Do net turn to any other section in the test.

PRACTICE

 TEST 13
Dr. John Chung's SAT Math

Which of the following expressions is equal to 0 for some value of x ?
A) $\frac{|x-2|}{2}+1$
B) $\frac{|x-1|}{2}+2$
C) $\frac{|x+2|}{2}+3$
D) $\frac{|x-1|}{2}-4$

2

$$
f(x)=x^{2}+2 x+k
$$

In the function above, k is a constant, If the minimum value of $f(x)$ is 8 , what is the value of k ?
A) 4
B) 6
C) 8
D) 9
3.

$$
\begin{aligned}
& y=(x-2)(x+2) \\
& y=-3
\end{aligned}
$$

How many ordered pairs (x, y) satisfy the system of equalions shown above?
A) 0
B) 1
C) 2
D) Infinitely many

4

If $f(x-1)=-5 x+2$, what is $f(x+2)$ equal to?
A) $-5 x-2$
B) $-5 x-13$
C) $-5 x-14$
D) $-5 x^{2}-10 x+2$

5

$$
2 x^{2}+8 x+10
$$

Which of the following is equivalent to the expression above?
A) $(2 x+2)(x+5)$
B) $(2 x-2)(x-5)$
C) $2(x+2)^{2}+10$
D) $2(x+2)^{2}+2$

If $\frac{2 \sqrt{a}-\sqrt{b}}{2 \sqrt{b}}=\frac{1}{4}$, what is the value of $\frac{a}{b}$?
A) $\frac{2}{3}$
B) $\frac{3}{4}$
C) $\frac{4}{9}$
D) $\frac{9}{16}$

The functions f and g are defined by $f(x)=x^{2}-9$ and $g(x)=-\frac{1}{8} x^{2}+k$, where k is a constam. In the $x y$-plane above, the graphs of f and g intersect at the points P and Q. What is the value of k ?
A) 1
B) $\frac{8}{9}$
C) $\frac{9}{8}$
D) $\frac{3}{2}$

8

- x н

$$
\frac{\frac{\pi}{2}^{2}}{4}-x=\frac{k}{2}
$$

In the quadratic equation above, k is a constant. For what following values of k does the equation heve two unequal real rocts?
A) -6
B) -4
C) -2
D) $-\mathbf{l}$

$$
(2-i)(3+2 i)-5 i=a+b i
$$

In the expression above, a and b are real numbers.
What is the value of b ? $($ Note: $i=\sqrt{-1})$
A) -4
B) -2
C) 4
D) 8

In the figure above, three identicalicicles with radius of 5 are-tangent to-ene another- If fines ℓ and m are parallel and tangent to the circles, what is the value of h, the distance between the two lintes?
A) $5 \sqrt{2}+10$
B) $10 \sqrt{3}+5$
C) $5 \sqrt{3}+10$
D) $10 \sqrt{3}+10$

11

The population of a nation decreases by 2.5% every 10 years. If the population was $10,000,000$ people in 2000 , which of the followiag expressions estimates the population of the mation in the year 2040 ?
A) $10,000,000(0.025)^{40}$
B) $10,000,000(0.025)^{4}$
C) $10,000,000(0.975)^{40}$
D) $10,000,000(0.975)^{4}$

12

$$
x^{2}-5 x-11=a\left(x^{2}-1\right)+b(x+1)+c
$$

In the cquation above, a, b, and c are constants. If the equation has infinitely many solutions, what is the value of c ?
A) -7
B) -5
C) 2
D) 7

13

Fifday, Peter drives from home to his office in 24 minutes. Saturday, there is no traffic, so he can drive to his oftice 15 miles per hour faster and gets to the office in 15 minntes. How far, in miles, is it from home to his office?
A) 10
B) 12
C) 20
D) 25

14

In the λ^{2}-plane above, the graph of the equation $y=a(x+4)(x-2)$ has a vertex at point P. If the graph intersects the x-axis al points R and S, what is the arca of $\triangle R P S$?
A) $-54 a$
B) $-27 a$
C) 27π
D) $54 a$

45

When $2 x^{2}-5 x+4$ is divided by $(x-1)(x+1)$, the resulting remainder is $a x+b$, where a and b are constants. What is the value of a ?
A) 6
B) 5
C) -5
D) -6

DIRECTIONS

For questions 16-20, solve the probien and enter your answer' in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credta onfy if the circles are fifled in comectly.
2. Mark-no more than one circle in any colamn.
3. No question has a negative answer.
4. Some problens may have more than one
 answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded as 3.5 or $7 / 2$. (If $3 \left\lvert\, \frac{1}{6} /\right.$ / 2 s entered into the grid, it will be interpreted as $\frac{31}{2}$, nol $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decinal answer with more digits than the grid can accommodate, il may be either rounded or truncated, but it must fill the entire grid.

Acceptaible ways to grid $\frac{2}{3}$ are:

Answer: 201
Either bosition is conect.

Note: You
may start your answers in any colimn, space permitting. Columns you don't need to use should be left blank.

16

In the figure above, $\angle X A B$ and $\angle X Y A$ are inscribed is the circle. If $\overline{A B}$ is the diameter of the circle, and the measure of $\angle X A B$ is 65°, what is the value of x ?

19

The function f is defined by $f(x)=x^{3}-a x^{2}+b x-4$ where a and b are constants. In the $x y$-plane, the graph of f intersects the x-axis at the three points $(-1,0),(-2,0)$, and $(k, 0)$. What is the value of k ?

20

The graphs of $y=x^{2}$ and $y=m x-1$ are shown in the $x y$-plane above, where m is the slope of the line If the graph of $y=n x-1$ is tangent to the graph of $y=x^{2}$, what is the value of m ?

STOP

If you finish before time is called, you may check your work on this section only. Do not turn to any other section in the test.

Peter did push-ups every day. Each day after the first day, he did m more push-ups than the day before. If he did k push-ups on the first day, which of the following was the number of push-ups on the 7th day?
A) $7(m+k)$
B) $k+7(m-1)$
C) $k+7 m$
D) $-4 \div 6 m$

2

One soccer bail and two soceer shirts together cost P dollars. Three soccer bails and four soceer shirts together $\cos t$ dollars. What is the cost, in dollars, of one soccer ball and one soccer shirt?
A) $Q+P$
B) $Q-2 P$
C) $Q-p$
D) $\frac{Q-P}{2}$

3

$$
x+16<2 x+1<x+46
$$

Which of the following is equivalent to the inequality above?
A) $|x-15|<45$
B) $|x-29| \leq 15$
C) $|x-30|<15$
D) $|x+15|<30$

4

In the figure above, $\triangle A B C$ and $\triangle D B E$ are similar and $\frac{A D}{A B}=\frac{1}{3}$. If the area of $\triangle A B C$ is 45 , what is the area of the shaded region?
A) 15
B) 17.5
C) 25
D) 30

Which of the following are the zeros of the function $f(x)=\frac{1}{10} x^{2}+\frac{1}{5} x+\frac{1}{20} ?$
A) $x=\frac{-5 \pm \sqrt{2}}{5}$
B) $x=\frac{-4 \pm 2 \sqrt{2}}{5}$
C) $x=\frac{-4 \pm 2 \sqrt{2}}{5}$
D) $x=-2 \pm \sqrt{2}$

6

Which of the following equations has no real solution?
A) $0=-(x-5)^{2}+\sqrt{3}$
B) $0=-3(x-5)(x+9)$
C) $0=2(x-5)^{2}-\frac{1}{9}$
D) $0=(x-1)(x-7)+10$

Questions 7-8 refer to the following information.

t (years)	100	200	300	400
y (radioactive grams)	400	200	100	50

Radioactive decay is an exponential function where the amount, y, of radioactive material is reduced by one balf over certain period of time t. The lable above represents such exponential decay over 400 years.

7

Which of the following finctions represents the exponential decay shown in the table?
A) $f(x)=400\left(\frac{1}{2}\right)^{t}$
B) $f(x)=400\left(\frac{1}{2}\right)^{\frac{1}{100}}$
C) $f(x)=800\left(\frac{1}{2}\right)^{\prime}$
D) $f(x)=800\left(\frac{1}{2}\right)^{\frac{1}{106}}$

8

How much of this material, in grams, would remain radioactive after 1000 years?
A) 0.78125
B) 0.90254
C) 1.5625
D) 3.125

Which of the following describes the transformation of the quadratic function $f(x)=x^{2}$ that results in the function $g(x)=x^{2}+12 x+20 ?$
A) The graph of f has been translated 12 units to the right and noved up 20 units.
B) The graph of f has been translated 6 units to the right and moved down 20 units.
C) The graph of f has been translated 6 units to the lefl and moved up 16 units.
D) The graph of f has beon translated 6 units to the left and moved down 16 unils.

10

Isosceles trapezoid $A B C D$ is shown above. $A B=2 a, \quad B C=a$, and $\angle B A D=60^{\circ}$ - What is the area of the isosceles trapezoid?
A) $\frac{a^{2} \sqrt{2}}{2}$
B) $2 a^{2} \sqrt{3}$
C) $\frac{a^{2} \sqrt{3}}{2}$
D) $a^{2} \sqrt{3}$

11

The graph of $y=f(x)$ is shown in the $x y$-plane above. If $g(x)=f(-x)$, which of the following graphs bet represents the graph of $y=g(x)$?
A)

B)

C)

D)

12

In the $x y$-plane above, the graphs of $y=x^{2}-4$ and $y=m x+k$ intersect at $x=-2$ and $x=3$. What is the value of k ?
A) 1
B) 2
C) 3
D) 4

13

In the ligure above, $A E=18, D E=9$, and $C D=15$.
What is the length of $\overline{A B}$?
A) 15
B) 18
C) 21
D) 24

In the . y-plane above, the equation of citcle P is $(x-12)^{2}+y^{2}=144$ and M is the midpoint of $\overline{P S}$ What is the area of the shaded region?
A) $72 \sqrt{3}$
B) $72 \sqrt{3}-36 \pi$
C) $72 \sqrt{3}-24 \pi$
D) $72 \sqrt{3}-12 \pi$

15

The finction $f(x)=-x^{2}-2 x+3$ is defined for $-2 \leq x \leq 2$. Which of the following represeals the range of the function?
A) $-3 \leq f \leq 4$
B) $-5 \leq f \leq 3$
C) $-5 \leq f \leq 4$
D) $-3 \leq f \leq 5$

16

The seater plot shows the relationship between body mass and test bite force for lions. The linear model of best fit for the data is also shown. For a body mass of 175 pounds, which of the following hest approximates the percent increase from the test bite force to the force that the model predicts?
A) 50%
B) 100%
C) 125%
D) 150%

$$
\sqrt[3]{a^{2 x+3}}=\sqrt{a^{r-2}}
$$

In the equation above, a is a positive number. What is the value of x ?
A) 12
B) 10
C) -10
D) -12

18

A truck leaves City A traveling at an average speed of 40 miles per hour. Three hous later, a car leaves City A, on the same route, traveling at an average speed of 60 miles per hour. How many hours after the cat leaves City A will the car calch up to the truck?
A) 4
B) 6
C) 9
D) 12

19

In the y^{-p}-plane above, the area of $\triangle O P R$ is 24 . What is the slope of $\overline{O P}$?
A) $\frac{4}{3}$
B) $\frac{3}{4}$
C) $\frac{2}{3}$
D) $\frac{1}{2}$

20

If $z=a+b i$ and $\frac{z-i}{z+1}=3$, where a and b are real numbers, which of the following is the value of a ?
A) -0.5
B) -1.5
C) -2
D) -2.5

21

Gender	Junior	Senior
Female		
Male		
Total	66	18

The incomplete table above shows the number of juniors and sertiors in a certain reading group. There are three times as many female-juniors as there are female-seniors, and there are five times as many male-juniors as there are male-seniors. Ilow nany male-juniors are there in the reading group?
A) 6
B) 20
C) 30
D) 40

22

The cytinder above was aliored by inereasing its radius of the base by 10 percent and decreasing its height by k percent. If these alterations decreased the volume of the cylinder by 8 percent, which of the following is the closest to the value of k ?
A) 10
B) 12
C) 24
D) 32

23

$$
h=-16 t^{2}+80 t+108
$$

The equation above gives the height h, in feet, of a ball 1 seconds after it is thrown straight up with an initial velocity 80 feet per second. Which of the following is true for the interval fron 3 to 5 seconds?
A) The ball is moving upward at an average rate of 48 feet per second.
B) The ball is mowing upward at an average rate of 96 feet per second.
C) The ball is moving downward at an-average rate of 48 feet per second.
D) The ball is moving downward at an average rate of 96 feet per second.

Questions 24-25 refer to the following information.

In the $x y$-plane above, the cross-section view of a certain river is modeled by the graph of an equation
$y=\frac{1}{50}(x-100)(x-b)$, where b is a conslant. The length of a bridge that spans the river is the distance from the point $(100,0)$ to the other point $(b, 0)$.

24

How long is the bridge in meters?
A) 100
B) 125
C) 150
D) 175

25

How high, in meters, is it from the botion of the river to the bridge?
A) 112.5
B) 125
C) 127.5
D) 130

A \qquad

Note: Figure not drawn to scale.

In the figure above, $\sin \left(a^{\circ}\right)=\cos \left(b^{a}\right)$ and $B C=10$. If $a=2 x-15$ and $b=5 x-21$, which of the following is closest to the area of triangle $A B C$?
A) 17
B) 20
C) 24
D) 48

27

$$
x^{2}+y^{2}-4 x+4 y-8=0
$$

The graph of the equation above in the x r-plane is a circle. If the center of this circle is translated 2 units up and the radius increased by 2 , which of the following is an equation of the resulting circle?
A) $(x-2)^{2}+y^{2}=18$
B) $(x-2)^{2}+(y+4)^{2}=36$
C) $(x-2)^{2}+y^{2}=36$
D) $(x-2)^{2}+(y-2)^{2}=36$

The circle above in the $x y$-plane is centered at the origin, O, and the coondinates of puints A and B are also shown. What is lhe area of the shaded region?
A) $\frac{5 \pi}{6}$
B) $\frac{3 \pi}{2}$
C) $\frac{5 \pi}{3}$
D) $\frac{11 \pi}{6}$

29

If $x=1-i$, where $i=\sqrt{-1}$, what is the value of $(x-1)^{4}+2(x-1)^{2}+x-1$?
A) $-1+i$
B) $-1-i$
C) $1+i$
D) $1-i$
30.

If the function f is defined by $f\left(\frac{x-1}{2}\right)=x^{2}+1$,
what is the value of $f(-3)$?
A) 32
B) 26
C) 10
D) -10

DIRECTIONS

For questions 31-38, solve the problem and enter your answer in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will teceive credit only if the circles are filled in correctly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may lave more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded as 3.5 or $7 / 2$. (If $\quad 3\left|\frac{1}{\mid D}\right|$ 因 grtid, it will be interpeted as $\frac{31}{2}$, not $3 \frac{1}{2}$.
6. Decimal answers: fi you obtain a decimal auswer with more digits than the grid can accommodate, it may be either rounded or tuncated, but it must fill the entire grid.

Acceptable ways to grid $\frac{2}{3}$ are:

Answer: 201
Either position is conect.

Note: You may start you: answers in any columin, space permitting Columns you don't need to
use should be left blank.

31

Note: Figure not drawn to scale.
In the $x y$-plane above, the area of isosceles trapezoid $O P Q R$ is 12 8 . What is the value of a ?
 If $\sqrt{x-1}+7=x$, what is the value of x ?

33

In the figure above, $\sin \angle B A D=0.4$ and $\sin \angle B C D=0.5$. If the lengto of $A B$ is 10 , what is the length of $\overline{C D}$?

34

$$
(\sqrt{x}+2)^{2}-2(\sqrt{x}+2)-3=0
$$

In the equation above, what is the value of x ?

35

$$
\begin{aligned}
& (x-1)^{2}-3(x-1)=y \\
& 6 x-y=6
\end{aligned}
$$

If (x, y) is a solution of the systern of equations above and $y \neq 0$, what is the value of x ?

31

Nete: Figure not drawn to scale.
In the x-plane above, the area of isosceles trapezoid $O P Q R$ is 12 B . What is the value of a ?
 If $\sqrt{x-1}+7=x$, what is the value of x ?

33

In the figure above, $\sin \angle B A D=0.4$ and $\sin \angle B C D=0.5$. If the length of $\overline{A B}$ is 10 , what is the length of $\overline{C D}$?

$$
(\sqrt{x}+2)^{2}-2(\sqrt{x}+2)-3=0
$$

In the equation above, what is the value of x ?

35

$$
\begin{aligned}
& (x-1)^{2}-3(x-1)=y \\
& 6 x-y=6
\end{aligned}
$$

If (x, y) is a solution of the system of cquations above and $y \neq 0$, what is the value of x ?

36

The graph of $y=\frac{x^{2}-4}{(x-3)(x-2)}$ has a vertical asymptote at $x=a$. What is the value of a ?

$$
\frac{x}{x-2}=\frac{x-k}{x-4}
$$

In the equation above, k is a constant. If the equation has no solution, what is the value of k ?

37

$$
\frac{2}{x^{2}+3 x+2}=\frac{a}{x+1}+\frac{b}{x+2}
$$

The equation above is always true for all values of x except $x=-1$ and $x=-2$, where a and b are constants. What is the value of a ?

PRACTICE

TEST

14

Dr. John Chung's SAT Math

1
Which of the following is equal to $10^{-\frac{2}{3}}$?
A) $\sqrt{100}$
B) $\sqrt[3]{100}$
C) $\sqrt{\frac{I}{100}}$
D) $\frac{1}{\sqrt[3]{10 \theta^{2}}}$

2

If $a+2 b=2$ and $a-2 b=10$, what is the value of $2 a^{2}-8 b^{2}$?
A) 40
B) 30
C) 20
D) 10

3.

Which of the following is the graph of an even finction?
A)

B)

C)

D)

4

Which of the following numbers is contained in the domain of the function $f(x)=\frac{1}{x-5}-\frac{1}{\sqrt{x-5}}$?
A) 6
B) 5
C) -5
D) -6

5

Note: Figure not drawn to scale.

In the figure above, the radius of cirele O is 10 and $\overline{B C}$ is perpendicular to $\overline{A D}$. What is the lemgth of $\overline{A C}$?
A) 12
B) 13
C) 15
D) 18

6

If the graph of $y=x^{2}-2 x+k$ in the $x y$-plane intersects the line $y=3$ exactly once, what is the value of k ?
A) 5
B) 4
C) 3
D) 2

8

$$
x^{2}-4 x+2=0
$$

If a and b are the roots of the equation above, what is the value of $(a+1)(b+1)$?
A) 5
B) 6
C) 7
D). 10

9.

$$
\begin{aligned}
& 3 x-5 y=5 \\
& 5 x-3 y=35
\end{aligned}
$$

If (x, y) is a solution to the system of equations above, what is the value of $x-7$?
A) 5
B) 10
C) 20
D) 40

10

x	$f(x)$
0	6
1	0
2	-2
3	0
4	6

Sonne values of x and $f(x)$ are shown in the table above. If the function f is defined by a quadratic polynomial, which of the following defines f ?
A) $f(x)=(x-1)(x-3)$
B) $f(x)=3 x(x-6)$
C) $f(x)=2(x-1)(x-3)$
D) $f(x)=2(x+1)(x+4)$

If $a^{5}=10$ and $a^{7}=\frac{2}{p}$, which of the following is an expression for p ?
A) $2 a^{2}$
B) $\frac{5}{a^{2}}$
c) $\frac{1}{5 a^{2}}$
D) $\frac{a^{2}}{100}$

12

A movie thealer sold n tickets today. Some of these were adult tickets and the rest were child tickels. An adule ticket costs twelve dollars and a child ticket costs eight dollars. If the theater sold $\$ 2000$ worth of tickets, and the number of child tickets sold is c, which of the following could be the value of n ?
A) $11=\frac{2000}{c}$
B) $n=\frac{500-4 c}{3}$
C) $n=\frac{500-c}{3}$
D) $n=\frac{500+c}{3}$

13

\square B

$$
f(x)=x(x+2)(x-3)
$$

In the function $f^{\prime}(x)$ above, which of the following aboul the grapla of f in the x-plane could not be the?
A) The graph of f rises to the right as x approaches positive infinity.
B) The function f falls to the left as x approaches negative inftnity.
C) The finction f has three distinct real zeros.
D) The graph of f has a negative y-intercept.

14

Each dot plot represents the number of pets owned by students in a class. Which of the following data sets appears to have be smallest standard deviation?
A)

B)

C)

D)

Number of Pets

In the $x y$-plane above, the graphs of $f(x)$ and $g(x)$ are shown. The graph of $g(x)$ is the result of a
tranglation of $f(x)$. If $f(x)=x^{2}(x-2)$, which of the following is an equation of $g(x)$?
A) $g(x)=(x-2)^{3}+2(x-2)-2$
B) $g(x)=(x+2)^{3}-2(x+2)^{2}-2$
C) $g(x)=(x-2)^{3}-2(x-2)^{2}-2$
D) $g(x)=(x+2)^{3}-2(x+2)^{2}-2$

DIRECTIONS

For questions $16-20$, solve the problem and

4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ tuust be gridded as 3.5 or $7 / 2$. (if $3|1 /| 2$ s enteren into the grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or fruncated, but it must fill the entire grid.

$$
\text { Acceptable ways to grid } \frac{2}{3} \text { arc: }
$$

Answer: 201
Either position is correct.

Note: You
may start your answers in any column, space permiting. Columns you don't need to use should be left blank.

If $(x+y)^{2}=10$ and $(x-y)^{2}=4$, what is the value of $x y$?

17

$$
f\left(\frac{x}{3}\right)=x^{2}-2 x+k
$$

In the equation above, k is a constant. If $f(2)=20$, what is the value of $f(-2)$?

18

In the figure above, the area of square $A B C D$ is 36 and M is the midpoint of $\overline{A D}$. What is the area of $\triangle A B E$?

In the $x y$-plane above, the slope of line ℓ is 2 and the slope of line m is 1 . Lines ℓ and m intersect at point P. What is the area of $\triangle P Q R$?

20

$$
\begin{aligned}
& y=|x-3| \\
& y=x
\end{aligned}
$$

If (a, b) is a solution to the system of equations above, what is the value of a ?

STOP

If you finish before time is called, you may check your work on this section only.
Do not turn to any other section in the test.

Hillary's new car costs m dollars per month for car payment and insurance. She extimates that gas and maintenance cost k cents per mile. What is her total monthly cost, in dollars, as a function of the miles, x, driven during the month?
A) $(m+k) x$
B) $i x x+\frac{k x}{100}$
C) $m+\frac{k x}{100}$
D) $100 m+1 k$

2

If x is greater than y, x is how much, in percent, greater than y ?
A) $\frac{x}{y}$
B) $\frac{x-y}{y}$
C) $\frac{100 x}{y}$
D) $\frac{100(x-y)}{y}$

3

Note: Figure not drawn te-scale.
In the $x y$-plane above, $B C=A C$ and $A B=3 \sqrt{2}$. If the coordinates of point A are $(1,2)$, what are the coordinates point B ?
A) $(3,3)$
B) $(3,4)$
C) $(4,5)$
D) $(5,6)$

4

If $\sec (3 x+10)^{\circ}=\csc (x-20)^{\circ}$, which of the following could be the value of x ?
A) 20
B) 25
C) 30
D) 35

5

Which of the following could be the graph of a fifth degree equation with a leading coefficient of five and a constant of three?

B)

C)

D)

6

What is the range of the function $y=2 x^{2}-8 x-3$?
A) All real numbers greate: than or equal to - 13 .
B) All real numbers less than or equal to -13 .
C) All real numbers greater than or equal to -11 .
D) All real numbers less than of equal to -11 .

7

The equation $P=20,000(0.93)^{10}$ is being used to calculate the cost of money of an automobile. What does 0.93 represent in this equation?
A) 0.93% decay
B) 0.93% glowth
C) 7% decay
D) 7% growih

4

The graph above shows the variation in the average lemperature of a certain atea from 1995 to 2015. During which year did the temperature variation change the mosi per year?
A) 1995-2000
B) 2000-2005
C) 2005-2010
D) 2010-2015

9

If $x \leq-10$ or $x \geq 16$, which of the following represents the values of $x \geqslant$
A) $|x+3| \leq 13$
B) $|x+3| \geq 13$
C) $|x-3| \geq 13$
D) $|x-3| \leq 13$

10

If the vertex of $y=x^{2}-a x+b$ has coordinates $(2,-5)$, what is the y-intercept of this graph in the $x y$-plane"?
A) $(0,2)$
B) $(0,1)$
C) $(0,-1)$
D) $(0,-2)$

11

$$
\begin{aligned}
& y=-|x-2|+3 \\
& y=(x-2)^{2}+k
\end{aligned}
$$

In the system of equations above, for which of the following values of k goes the system have no solution?
A) -2
B) 0
C) 3
D) 4

$$
f(x)=a(x-b)^{2}+10
$$

In the $x y$-plane, the graph of the function f above has x-intercepts at -2 and 6 . What is the value of a ?
A) -5
B) $-\frac{5}{8}$
C) $\frac{5}{8}$
D) 5

13

$$
\begin{aligned}
& 2 x-3 y=1 \\
& a x+b y=c
\end{aligned}
$$

In the system of equations above, a, b, and c are conslants. For which of the following values of a, b and c does the system have only one solution?
A) $a=2, b=-3, c=1$
B) $a=4, b=-6, c=5$
C) $a=6, b=-9, c=5$
D) $a=10, b=10, c=1$

In the $x y$-plane above, what are the coordinates of point M
A) $(2,0)$
B) $(3,0)$
C) $(4,0)$
C) $(5,0)$

$$
\sqrt{4}=\frac{9}{5} c+32
$$

Based on the equation athove, if there is an increase of 27 in F, how much is the increase in C ?
A) 9
B) 15
C) 27
D) 59

16

क世 क

The scatterplot above shows the ticket price for a school music concert and the profit made when the ticket was sold at dieferent prices. A quadratic model thet best fits the data was drawn on the scatterplet. For a ticket price of $\$ 40$, which of the following is clusest to the percent decrease from the actual profit to the profit predicted by the curve of best fit?
A) 25%
B) 29%
C) 40%
D) 50%

Gender	Chocolate	Strawberry	Total
Male	20		
Female		15	25
Total	30		70

The inconplete table above sumurizes a survey of students' favorite ice cream flevors ina-math club. What percent of students prefer strawberry ice cream are -male?
A) 34%
B) 40%
C) 60%
D) 62.5%

18

$$
\frac{x+1}{x^{2}-3 x+2}=-\frac{a}{x-1}+\frac{b}{x-2}
$$

The equation above is true for all values of x except I and 2 , where a and b are constants. What is the value of a ?
A) -4
B) -2
C) 3
D) 4

19

Note: Figure not drawn to scale.
In the $x y$-plane above, $\overline{O P}$ is perpendiculat to $\overline{P R}$.
What is the value of k ?
A) 5
B) $2 \sqrt{10}$
C) 8
D) $3 \sqrt{5}$

20

$$
\begin{aligned}
& y \leq 4-x^{2} \\
& y \geq x+2
\end{aligned}
$$

If (a, b) is a solution to the system of inequalities above, what is the maximum value of b ?
A) 3
B) 4
C) 5
D) 6

Machine	10 inches	20 incles	Hours available
A	1 hour	2 hours	20 hours
B	2 hours	3 hours	15 hours

A small computer monitor manufacturing company produces 10 -inch and 20 -inch sized monitors. The table aboye shows how many hours are required on each machine per day in order to produce the monitors. If x represents the number of 10 -inch monitors and y represents the number of 20 -inch monitors, which of the following systems represents all the constraints that x and y must satisfy?
A) $\left\{\begin{array}{l}x \geq 0 \\ y \geq 0 \\ x+2 y \geq 20 \\ 2 x+3 y \geq 15\end{array}\right.$
B) $\left\{\begin{array}{l}0 \leq x \leq 3 \\ 0 \leq y \leq 5 \\ x+2 y \leq 20 \\ 2 x+3 y \leq 15\end{array}\right.$
C) $\left\{\begin{array}{l}x \geq 0 \\ y \geq 0 \\ x+2 y \leq 20 \\ 2 x+3 y \leq 15\end{array}\right.$
D) $\left\{\begin{array}{l}x \geq 0 \\ y \geq 0 \\ x+2 y=20 \\ 2 x+3 y=15\end{array}\right.$

22

The triangle above was altered by increasing its base by 20 percent and decrcasing its height by k percent. If these alterations decreased the-area of the triangle-by 16 percent, which of the following is the value of $\$?$
A) 20
B) 25
C) 30
D) 40

23

$$
P(x)=x^{2}-5 x+k
$$

In the function above, k is a constant. When a polynomial $P(x)$ is divided by $x-1$, the remainder is 3. If $P(x)$ is divided by $x+1$, what is the remainder?
A) 3
B) 4
C) 7
D) 13

24

$$
(2-3 i) a+(3-2 i) b=5 i
$$

In the equation above, a and b are real numbers. What is the value of b ? (Note: $i=\sqrt{-1})$
A) -3
B) -2
C) 2
D) 3

25

In the $x y$-plane above, line ℓ is defined by the equation $3 x+4 y=12$ and $\overline{O P}$ is perpendicular to tine ℓ. What is the length of $\overrightarrow{O P}$?
A) 1.6
B) 2.4
C) 3.2
D) 3.6

26

If $f(x)=2^{x}$ and $f(x-1)=f(x)-8$, what is the value of x ?
A) 2
B) 4
C) 6
D) 8

28

In the figure above, $\overline{P A}$ and $\overline{P B}$ are tangent to circle O with radius $A O=6$. If the measure of $\angle A P B$-is- 60°, which of the following is closest to-the area of the shaded region?
A) 20
B) 25
C) 28
D) 30

29

$$
f(x)=x^{2}+m x+4
$$

In the function above, $f(x)>0$ for all values of x. Which of the following could be the value of m ?
A) 8
B) 6
C) 4
D) 2

30

Which of the following functions is an odd function?
A) $f(x)=x+5$
B) $f(x)=x^{2}$
C) $f(x)=x^{3}$
D) $f(x)=x^{3}+5$

DIRECTIONS

For questions 31-38, solve the problem and enter your answer in the grid, as descitibed below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles are filled in conrectly.
2. Mark no more than one circle in any column.
3. No question has a negative answer.
4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded as 3.5 or $7 / 2$. (If $3 \mid 1 / 1$ 国entered into the grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$,)
6. Dectmal auswers; If you obbain a decimal auswer with more digits than the grid can accommodate, it may be either rounded or ${ }^{1}$ trincated, but it must fill the entire grid.

Acceplable ways to grid $\frac{2}{3}$ are:

Answer: 201
Either position is conect.

Note: You may slart your answers in any column, space permitting. Columns you don't need to
use should be left blank.

31
If $\frac{1}{10} x+\frac{1}{20} y=5$, what is the value of $4 x+2 y$?

32

$$
2 \sqrt{x}+8=x
$$

What is the solution to the equation above?

33

If $x^{2}-y^{2}+(x+y) i=12+5 i$, what is the value of $x-y ?($ Note: $i=\sqrt{-1})$

34

Note: Figure not drawn to scale.

In the $x y$-plane above, the cross-section view of a turnel under a bridge with ant opening in the shape of a patabolic arch is shown. A large rectangular house trailer can be moved atong a highway that passes through the oumel. If the trailer is 8 meters wide and 6 meters tall, what is the heighit, h in meters, of the tunnel in the center?

35

In the $x y$-plane, a parabola with equation
$y=(x-5)^{2}-10$ intersects a line with equation $y=6$ ut two points, A and B. What is the length of $\overline{A B}$?

31

If $\frac{1}{10} x+\frac{1}{20} y=5$, what is the value of $4 x+2 y$?

32

$$
2 \sqrt{x}+8=x
$$

What is the solution to the equation above?

33

If $x^{2}-y^{2}+(x+y) i=12+5 i$, what is the value of $x-y ?($ Note: $i=\sqrt{-1})$

Note: Figure not drawn to scale

In the $x y$-plane above, the cross-section view of a turnel under a bridge with an opening in the shape of a parabolic arch is shown. A large rectangular house trailer can be moved along a highway that passes through the wrnel. If the trailer is 8 meters wide and 6 meters tall, what is the height, h in meters, of the unnel in the center?

35
In the $x y$-plane, a parabola with equation
$y=(x-5)^{2}-10$ intersects a line with equation $y=6$ at two points, A and B. What is the length of $\overline{A B}$?

36

In the figure above, line ℓ is tangent to both curcies at points A and B yespectively. The radius of circle A is 4 and the radius of circle B is 9 . What is the length of $\overline{P S}$?

57

$$
C(10)=3,400-n
$$

A manufacturing company sells a certain product for $\$ 6$ per unit. The cast , C, of producing n units is estimated by the formula above. How many units must the company produce and sell to earn a profit of $\$ 2,200$?

38

Note: Figure not drawn to scale.
In the $x y$-plane above, the arca of $\triangle P O B$ is three times the area of $\triangle P O A$, and points A, B, and P lie on line $?$ What is the value of a ?

STOP

If you finish before time is called, you may check your work on this section only. Do not turn to any other section in the test.

PRACTICE TEST 15

Dr. John Chung's SAT Math

1

What are the solutions to the equation $\frac{1}{10} x^{2}-\frac{1}{5} x=\frac{4}{5}$?
A) -2 and -4
B) -2 and 4
C) 4 and 6
D) 4 and 8

2

If $\frac{a}{2 b}=5$, what is the value of $\frac{15 b}{2 a}$?
A) $\frac{2}{3}$
B) $\frac{3}{4}$
C) $\frac{7}{2}$
D) $\frac{15}{2}$

3

Which of the following is equal to $\frac{a^{\frac{1}{2}}}{a^{-\frac{1}{3}}}$?
A) $\sqrt[6]{a}$
B) $\sqrt{6^{5}}$
C) $\sqrt[6]{a^{5}}$
D) $\sqrt[5]{a^{6}}$

4

The graph above shows Peter's distance from his campsite in h hours. Whieli hondy interval had the greatest rate of change?
A) bour 0 to bour 1
B) hour 1 to hout 2
C) bour 4 to hour 5
D) heur 5 to hour 6

If $\frac{8}{x}-\frac{12}{x+10}=0$, what is the value of $\frac{x}{4}$?
A) 20
B) 10
C) 5
D) 2

7

The line $y=m-5$, where m is a conslant, is graphed in the $x y$-plane. If the lime passes through the points $(a, 0)$, where $a \neq 0$, what is the slope of the line in tems of a ?
A) $-\frac{a}{5}$
B) $-\frac{5}{a}$
C) $\frac{a}{5}$
D) $\frac{5}{a}$

8

In the $x y$-plane, a line with equation $y=-26$ intersects a parabola with the equation $y=-(x-10)^{2}+10$ at points P and Q. What is the length of $\overline{P Q}$?
A) 6
B) 8
C) 12
D) 20

The equation $3 x^{3}-5 x+5=\left(3 x^{2}+3 x-2\right)(x-1)+a$ is true for all values of x, where a is a constant What is the value of a ?
A) 3
B) 5
C) 7
D) 8

10
A pharmaceutical salesperson receives a monlbly salary of $\$ 3000$ plus a commission of k percent of his sales. If the salesperson's monthly wage is $\$ 7200$, what are his sates in terms of k ?
A) 7200 k
B) 4200 k
C) $\frac{4200}{h}$
D) $\frac{420000}{k}$

On a trip downtown, Peter drove his car at an average rate of 50 miles per hour. On the retuin trip due to bad weather, he drove his car at an average rate of 30 miles per hour and the return trip took 1 hour longer.
How much time he spend on the renuming trip?
A) 1.5 hours
B) 2 hours
C) 2.5 houts
D) 3 houts

12

What are the zeros of $f(x)=2(x-4)^{2}-10$?
A) $x=-4 \pm \sqrt{5}$
B) $x=\frac{-4 \pm \sqrt{5}}{2}$
C) $x=4 \pm \sqrt{5}$
D) $x=\frac{4 \pm \sqrt{5}}{2}$

Questlons 13-14 refer to the following information.

The demestic lexlitg plan of a mobite telephone company is modeled by the graph in the $x y$-plane above.

13.

If Jackson uses 280 texis this month, what is his cost. in dollars?
A) 42
B) 44
C) 46
D) 48

14

If $x>100$, which of the following equations represents the cosc?
A) $y=\frac{1}{10} x$
B) $y=\frac{1}{10} x+30$
C) $y=\frac{1}{10}(x-100)+30$
D) $y=\frac{1}{10}(x-200)+30$

4 \qquad

15

Age	For	Against	No opinion
$21-30$	80	90	10
$31-40$	80	100	20
Over 40	40	70	10

The data in the table above show a public opinion poll exploring the relationship between age and support for a candidate in an election in a town. If a person is chosen at random from those whu are over 30 years old, what is the probability that the person belongs to the 31-40 age group and does not suppott the candidate?
A) $\frac{1}{5}$
B) $\frac{5}{16}$
C) $\frac{2}{5}$
D) $\frac{9}{24}$

DIRECTIONS

For questions $\mathbf{1 6 - 2 0}$, solve the problem and enter your answer it the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columas to help you fill in the circles accurately. Yoa will receive credit only if the eircles are filled in correctly.
2. Mark no more than one circle in any column.
3. Ne question has a negative answer.
4. Some problems may have more than one
 answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded as 3.5 or $7 / 2$. (if $3 \left\lvert\, \frac{1}{6} / 2\right.$ is entered into the grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.)
6. Decimal answers: If you obtain a decimal answer with more digits than the grid can accommodate, it may be either rounded or truncated, but if nust fill the entire grid.

Acceptable ways to grid $\frac{2}{3}$ are:

Answer: 201
Eilher position is conrect.

Note: You may star your answers in any column, space permiting. Columns you don't need to usc should be left blank.

19

16

If one of the zeros of $f(x)=2 x^{2}-8 x+k$ is -1 , what is the other zero of the function?

17

If $f(x+1)=5 x+k$ and $f(3)=8$, what is the value of $f(5)$?

18

In reclangle $A B C D$ above, $A D=12, A B=6$, and $E G=4$. What is the area of $\triangle E F G$?

$$
\begin{aligned}
& 3 x-a y=3 \\
& a x-b y=4
\end{aligned}
$$

In the system of equations above, a and b are nonzero constants, If the systen has infinitely many solutions, what is the value of b ?

20

In the figure above, $A D=4$ and $B D=3$. What is the value of $\sin C$?

STOP

If you finish before time is called, you may check your work on this section only. Do not turn to any other section in the test.

Which of the following equations las the same solution as $2 x^{2}-8 x-90=0$?
A) $(x-2)^{2}=98$
B) $(x-2)^{2}=49$
C) $(x-2)^{2}=45$
D) $(x-4)^{2}=45$

The graph of $y=2 x^{2}-9 x+4$ shown in the $x y$-plane above intersccts the x-axis at points P and Q. What is the length of $\overline{P Q}$?
A) 1.5
B) 2.5
C) 3.5
D) 4.5

For function $f, f(-1)=5$ and $f(3)=10$. For function $g, g(-1)=3$ and $g(3)-1$. What is the value of $f(g(-1))$?
A) 3
B) 5
C) 8
D) 10

6

The dol plot shown above represents the number of pets owned by students in a class. What is the median number of pels?
A) 1
B) 1.5
C) 2
D) 2.5

$$
(3-4 i)^{2}=a+b i
$$

In the equation above, a and b are constants. What is the value of a ? $($ Note: $i=\sqrt{-l})$
A) -10
B) -7
C) 16
D) 25

8

$$
\left(x+\frac{1}{x}\right)^{2}
$$

Which of the following is cequivalent to the expression above?
A) $x^{2}+\frac{1}{x^{2}}$
B) $\left(x-\frac{1}{x}\right)^{2}+2$
C) $\left(x-\frac{1}{x}\right)^{2}+4$
D) $x^{2}-\frac{1}{x^{2}}$

9

Which of the following equations has a graph in the $x y$-plane for which y is always greater than 0 ?
A) $y=x+5$
B) $y^{\prime}=x^{2}-2$
C) $y=(x-1)(x-3)$
D) $y=|x-|0|+1$

In the $x y$-plane above, $A B C D E F$ is a regular bexagon with a side of 2 . What is the x-coordinate of E ?
A) 5
B) 6
C) 7
D) 8

11

If $k^{2}-16=16-k^{2}$, what are all values of k ?
A) 0 only
B) 4 only
C) -4 and 4 only
D) $-4,0$, and 4

$$
\sin \left(2 x-\frac{\pi}{12}\right)=\cos \left(x+\frac{\pi}{12}\right)
$$

In the eruation above, the angle neasures are in radians. Which of the following could be the value of x ?
A) $\frac{\pi}{12}$
B) $\frac{\pi}{8}$
C) $\frac{\pi}{6}$
D) $\frac{\pi}{4}$

Questions 13-14 refer to the following information.

The graph above shows the sales for a smatphone company in the years 20 I throngl 2016.

13

Which interval has the grealest rate of change?
A) year 2012 to 2013
B) year 2013 to 2014
C) year 2014 to 2015
D) year 2015 to 2016

14

What is the average rate of change, in dollars per year, from year 2011 to 2016 ?
A) 1
B) 5
C) $1,000,000$
D) $5,000,000$

15

For a polynomial $p(x)$, the value of $p(2)$ and $p(-1)$ is 0 . Which of the following could not be true about $p(x)$?
A) $x-2$ is a factor of $p(x)$.
B) $x+1$ is a factor of $p(x)$.
C) $x^{2}-x-2$ is a factor of $p(x)$.
D) $(x-2)+(x+1)$ is a factor of $p(x)$.

46

The graph of $f(x)=(x-a)(x-3)$, where a is constant, is shown in the $x y$-plane above. If the y-intercept of the graph is 3 , what is the minimun value of $f ?$
A) -1
B) -1.5
C) -2
D) -2.5

17
If $a x^{2}+b x+c=a(x-h)^{2}+k$, which of the following is equal to h ?
A) $-\frac{b}{2}$
B) $-\frac{b}{2 a}$
C) $\frac{b}{2 a}$
D) $\frac{b}{2}$

18

The speed s, in meters per second, of sound in air is given by the formula $s=331+0.6 C$, where C is the Celsius temperature. If the Celsius lemperature increases by 10 , what would be the increase in the speed of sound?
A) 0.6 meters per second
B) 6 meters per second
C) 331 meters per second
D) 331.6 meters per second

19.

$$
g(x)=x^{2}+a x+b
$$

For the function g defined above, a and b are constants. If $g(-2)=g(10)$, what is the value of a ?
A) 8
B) 4
C) -6
D) -8

20

In the $x y$-plane above, the base of a rectangle is on the x-axis and the upper vertices are on the parabola $y=10-2 x^{2}$. Which of the following represents the area of the rectangle?
A) $10 a-2 a^{3}$
B) $2 a^{3}-10 a$
C) $20 a-4 a^{3}$
D) $4 a^{3}-20 a$

21

$$
x^{2}-2 a x+y^{2}-4 b x=0
$$

The equation of a circle in the $x y$-plane with center $(2,4)$ is shown above. What is the radius of the circle?
A) 4
B) $2 \sqrt{5}$
C) 5
D) $3 \sqrt{5}$

22

In the x-plane above, $\overline{O Q}$ is perpendicular to $\overline{O P}$ and the length of $\overrightarrow{O Q}$ is 5 . What are the cootdinates of point Q ?
A) $(-4,3)$
B) $(-4,5)$
C) $(-3,4)$
D) $(-3,5)$

The graph of the linear function g iutersects points $(p, 0)$ and $(0, q)$ in the $x^{-p l a n e}$. If $p q<0$, which of the following is true about the graph of g ?
A) The graph of g has a positive y-intercept
B) The graph of g has a negative y-intercepl.
C) The graph of g has a positive slope.
D) The graph of g has a negative slope.

24

If $5 x+y=13$ and $\frac{8^{x}}{2^{y}}=32$, What is the value of x ?
A) 2.25
B) 4.5
C) 6.5
D) 7.75

Questions 25-26 refer to the following information.

$$
h(t)=-4.9 t^{2}+v_{s} t
$$

An object is thrown into the air from the ground with at initial velocity of y_{0} meters per second. Then, t seconds later, its height h meters above the ground is modeled by the function above.

25

If an object is thrown into the ar with an upward velocity of 49 meters per second from the ground, after how many seconds with theobject hit thegrond?
A) 2.5
B) 5.0
C) 7.5
D) 10.0

26

Approximately what is the maximum height of the object?
A) 122.5
B) 245
C) 284
D) 320
27.

The scatterplot above shows the relationship between the number of chairs and the production cost per chair. The line of best fit is also shown. If 400 chairs have been produced, which of the following is closest to the cost per chair predicted by the line of best fit?
A) $\$ 280$
B) $\$ 276$
C) $\$ 270$
D) $\$ 267$

Note: Figure not drawn to scale.
The greples of f and g are shown in the $x y-p l a n e$ ahove. What is the area of triangle $A B C$?
A) 20
B) 27
C) 40
D) 54

29

If the graph of $y=2 x-k$, where k is a positive constaut, is aungent to the graph of $y=x^{2}$, what is the value of k ?
A) -2
B) -1
C) 1
D) 2

30

Note: Figure not drawn to scale.

The graphs of functions f and g indersect at points P and Q in the $x y$-plane above. What is the x-coordinate of point P ?
A) $\frac{1}{4}$
B) $\frac{1}{2}$
C) 1
D) 2

DIRECTIONS

For questions 31-38, solve the problem and enter your answer in the grid, as described below, on the answer sheet.

1. Although not required, it is suggested that you write your answer in the boxes at the top of the columns to help you fill in the circles accurately. You will receive credit only if the circles are filled in correctly.
2. Mark no more than one circle in any column.
3. No cquestion has a negative answer.
4. Some problems may have more than one answer.
5. Mixed numbers such as $3 \frac{1}{2}$ must be gridded as 3.5 or $7 / 2$. (If $\quad 3 \mid 1 / 2$ Bentered into the grid, it will be interpreted as $\frac{31}{2}$, not $3 \frac{1}{2}$.
6. Decimal answers: lf you obtain a decimal answer with more digits than the grid can accommodate, it may be either rourded or truncated, buit it must fill the entire grid.

Acceptable ways to grid $\frac{2}{3}$ are:

Answer: 201
Either position is conrect

Note: You may start your answers in any column, space permitting. Columns you don't need to use should be left blank.

If $9^{n-1}=\sqrt{27}$, whal is the value of x ?

32

Let f be a linear function such that $f(-1)=-3$ and $f(3)=12$. Whal is the value of $f(0)$?

33

$$
x-\sqrt{x+11}=1
$$

What is the solution to the equation above?

Annie currently has $\$ 200$ in her bank account and deposits $\$ 8$ each week. Becly has $\$ 360$ in her account and withdraws $\$ 4$ each week. After how many weeks will they Jave the same balance in their accounts?

35

$$
f(x)=\frac{x-10}{(x-10)^{2}+6(x-10)+9}
$$

For what value of x is the finction f above undefined?

Questions 36-37 refer to the following haformation.
Lee opened a hank account that cams 2 percent interest compounded quarterly. His initial deposil was $\$ 2000$, and the value of the account after $/$ years is given by the expression $2000(1+c)^{4}$.

36

Q+W घ

 4,

What is the value of c in the expression?

37

After 10 years, how much money will Lee have in his account? (Round your answer to the nearest doliar and ignore the dollar sign when gridding your answer.)

In the figure above, a cone has a height 16 and radius 8 . A cylinder whose base has a radius of 5 is inscribed in the cone. What is the height of the cylinder?

STOP

Answer Explanations

Test 1 Answers and Explanations

$\begin{gathered} \text { SECTION } \\ 3 \end{gathered}$, 1	2	3	4	5	6	7	8	9	10
	D	D	D	B	B	D	A	A.	C	D
	11	12	13	14	15	16	17	18	19	20
	C	C	A	D	A	$\frac{5}{13}$	36	3.5	12	7
SECTION 4	1	2	3	4.	5	6	7	8	9.	10.
	C	C	B	A	D	A	D	B	B	c
	, 11	12	13	14	15	16	17	18	19	20
	A	C	A	A	C	B	A	B	A	D
	21	22	23	24	25	26	27	28	29	30
	A	B	B	A	B	B	c	B	A	C
	31.	32	33	34	35	36	37	38		
	1.5	36	7	3/2	2.5	2	80	2081		

SECTION 3

1. D

$$
\frac{2 x-3}{2}=5-1 \rightarrow 2 x-3=8 \rightarrow 2 x=11
$$

2. D
$5+3 i-8+2 i=a+b i \rightarrow-3+5 i=a+b i$. Therefore, $a=-3$ and $b=5$.

3 D
Original price: $x, k=\frac{1}{2} x+20 \rightarrow k-20=\frac{1}{2} x \rightarrow x=2(k-20) \rightarrow x=2 k-40$
4. B
$m+p=\frac{k}{5} \rightarrow m=\frac{k}{5}-p \rightarrow m=\frac{k-5 p}{5}$
5. B

When $P=700,700=1200-20 s \rightarrow 20 s=500 \rightarrow s=25$.
When $P=900,900=1200-20 s \rightarrow 20 s=300 \rightarrow s=15$. $25-15=10$.
There is $\$ 10$ decrease in selling price.

Answer Explanations

6. D

$$
\left(x^{2}+y^{2}\right)^{2}-\left(x^{2}-y^{2}\right)^{2}=x^{4}+2 x^{2} y^{2}+y^{4}-\left(x^{4}-2 x^{2} y^{2}+y^{4}\right)=4 x^{2} y^{2}
$$

7. A

Proportion. $\frac{\$}{\text { wcek }}=\frac{k}{1}=\frac{P}{x} \rightarrow x=\frac{P}{k}$ weeks
8. A
$\frac{2 a}{b}=5 \rightarrow \frac{a}{b}=\frac{5}{2} \rightarrow \frac{b}{a}=\frac{2}{5}$. Therefore, $\frac{5 b}{a}=5\left(\frac{b}{a}\right)=5\left(\frac{2}{5}\right)=2$.
9. C

In order to have no solution: $\frac{2}{a}=\frac{b}{4} \neq \frac{10}{15}$. Therefore, $\frac{2}{a}=\frac{b}{4} \rightarrow a b=8$. Because $a=2 b,(2 b) b=8$
$2 b^{2}=8 \rightarrow b^{2}=4 \rightarrow b= \pm 2$. Now $a=2 b= \pm 4$. Possible valuc of a is 4 or -4 .
We know that $\frac{2}{4} \neq \frac{10}{15}$ at $a=4$.
10. D

Since axis of symmetry is $x=0$, the graph is symmetry in y-axis. Therefore $f(5)=f(-5)$.
11. C

C
Inversc variation: (\# of people) \times (\# of hours) $=$ Constant. Therefore, $20 \times 4=10 \times p \rightarrow p=8$ pcople.
12. C

Choice C is the vertex form of the equation.
In order to have vertex form, $f(x)=\left(x^{2}-6 x+9\right)+(7-9) \rightarrow f(x)=(x-3)^{2}-2$.
13. A

Identical equation has infinitely many solutions. Because $(3 x+4)(a x-b)=3 a x^{2}+(4 a-3 b) x-4 b$, $24 x^{2}-k x+16=3 a x^{2}+(4 a-3 b) x-4 b$. Therefore, $3 a=24 \rightarrow a=8$ and $-4 b=16 \rightarrow b=-4$. Now $-k=4 a-3 b \rightarrow-k=4(8)-3(-4)=48 \rightarrow k=-44$.
14. D

Because $x+3 y=5 \rightarrow y=-\frac{1}{3} x+\frac{5}{3}$, slope is $-\frac{1}{3}$. Slope of the perpendicular line must have slope of 3 , which is negative reciprocal of the other.

Answer Explanations

15. A

Since $\frac{27^{a}}{3^{b}}=\frac{3^{3 a}}{3^{b}}=3^{3 a-b}$ and $81=3^{4}, 3^{3 a-b}=3^{4} \rightarrow 3 a-b=4$.
When you solve system of equation by addition,

$$
\begin{aligned}
& a+b=8 \\
& 3 a-b=4 \\
& \hline 4 a \quad=12
\end{aligned} \rightarrow a=3 .
$$

16. $\frac{5}{13}$ or .384 (or .385)

17. 36

Proportion: $\frac{4}{10}=\frac{k}{10+80} \rightarrow 10 k=360 \rightarrow k=36$. Or, $\left(\frac{4}{k}=\frac{10}{90}\right)$
18. 3.5
$a(x+1)+b(x-1)=(a+b) x+a-6$. Then $(a+b) x+a-6=7 x$.
Since the equation is true for all real x, both side expressions must be same.
Therefore, $a+b=7$ and $a-b=0$. (system of equations)

$$
\begin{aligned}
& a+b=7 \\
& \frac{a-b=0}{2 a=7} \rightarrow a=\frac{7}{2}, \text { or } 3.5
\end{aligned}
$$

19. 12

From the equation $p=\frac{4}{3} k+81, \frac{4}{3}$ is slope.
By definition of slope: $\frac{\Delta p}{\Delta k}=\frac{4}{3} \rightarrow \frac{16}{\Delta k}=\frac{4}{3} \rightarrow 4 \Delta k=48 \rightarrow \Delta k=12$
When $k=0, p=81$. After increased by $16, p=97$.
When $p=97, \rightarrow 97=\frac{4}{3} k+81$, or $\frac{4}{3} k=16 \rightarrow k=\frac{3}{4}(16)=12$.

Answer Explanations

20. 7

Substitution: $\left.\begin{array}{l}x^{2}+y^{2}=56 \\ y=\sqrt{x}\end{array}\right\} \rightarrow x^{2}+x=56 \rightarrow x^{2}+x-56=0 \rightarrow(x+8)(x-7)=0$
Thereforc, $x=-8$ or $x=7$. But $\sqrt{-8}$ is undefined. Only $x=7$ is the solution.
You can take a look the graphs.

SECTION 4

1. C

When define the linear equation $y=m x+b$, slope $m=4$. Substitute any point in the table.
You can choose (1,6). $y=4 x+b \rightarrow 6=4(1)+b \rightarrow b=2$. Therefore the equation is $y=4 x+2$.
When $x=10, f(10)=4(10)+2=42$.
2. C

$$
3(a+2 b-c)=12 \rightarrow a+2 b-c=4 \rightarrow a+2 b=c+4
$$

3. B

Define: $\angle 2=x$ and $\angle 1=2 x . \angle 1+\angle 2=180 \rightarrow x+2 x=180 \rightarrow x=60$
Thercfore $\angle 1=2 x=2(60)=120$.
4. A $8^{n} \times 4^{2}=2^{10} \rightarrow 2^{3 n} \times 2^{4}=2^{10} \rightarrow 2^{3 n+4}=2^{10}$. From the equation $3 n+4=10 \rightarrow n=2$.
5. D

Since $|n+4| \geq 0,|n+4|+1 \geq 1$. It cannot be less than 1 .
6. A

From the equation $y=m x+6$, you can see y-intercept is $(0,6)$. Therefore, slope $m=\frac{6-2}{0-3}=-\frac{4}{3}$.

Answer Explanations

7. D
\# of boys $=2 \times$ (\# of girls) $\rightarrow b=2 \mathrm{~g}$. But $\mathrm{g} \geq 7$ and $b \leq 15$.
You can use a table as follows.

$$
\begin{array}{lllll}
\text { \#of girls }=7 & 8 & 9 & 10 \cdots \\
\# \text { of boys }=15 & 16 & 18 & 20 \cdots
\end{array}
$$

From the table, \# of boys cannot be more than 15 . Therefore, \# of students is $7+15=22$.
8. B

Avcrage $=\frac{\text { Totalscore }}{20}=\frac{30(2)+70(4)+100(6)+80(5)+40(3)}{20}=\frac{1460}{20}=73$
9. B

Since the peak is on axis of symmetry, $t=\frac{-b}{2 a}=\frac{-128}{2(-16)}=4$.
10. C

When the ball hit the ground, the height is $0 .-16 t^{2}+128 t+320=0 \rightarrow t^{2}-8 t-20=0$ $(t-10)(t+2)=0 \rightarrow t=-2$ or 10 . Thercfore, $t=10$.
11. A

If width $=x$, then length $=x+2 . x+(x+2)=27 \rightarrow 2 x+2=27 \rightarrow x=12.5$ and $x+2=14.5$.
Therefore, the area of the rectangle is $12.5 \times 14.5=181.25$.
12. C

You can check by substituting the coordinates into the inequalities.
Choice (C) $(0,-3)$, they are not true.
13. A

Slopes between any two points are constant. First you need to find slope or the value of k.
slope $=\frac{17-14}{(k+2)-k}=\frac{3}{2}$. Therefore, $\frac{m-2}{16-0}=\frac{3}{2} \rightarrow 2 m-4=48 \rightarrow 2 m=52 \rightarrow m=26$.
Or
Or

The linear equation is $y=\frac{3}{2} x+2$. By substituting $(16, m), m=\frac{3}{2}(16)+2=26$.
14. A

If original price $=k$, then $\frac{1}{3}\left(\frac{1}{4} k\right)=p \rightarrow \frac{1}{12} k=p \rightarrow k=12 p$.
15. C

The equation of radioactive decay is $p=p_{0}\left(\frac{1}{2}\right)^{t / n}$, where n is a half-life period.

Answer Explanations

16. B

$$
y=800\left(\frac{1}{2}\right)^{200 / 50}=800\left(\frac{1}{2}\right)^{4}=800\left(\frac{1}{16}\right)=50
$$

17. A

Area: $\frac{1}{2}(k+1) k=3 \rightarrow k^{2}+k=6 \rightarrow k^{2}+k-6=0 \rightarrow(k+3)(k-2)=0$
$k=-3$ or 2 . But $k>0 \rightarrow k=2$.
18. B

Since $r^{2}=(7-4)^{2}+(4-0)^{2}=25$, the equation is $(x-4)^{2}+y^{2}=25$.
19. A

When $x=-3, y=3$. When $x=6, y=5$.
Average rate of change (slope between two points) is $\frac{5-3}{6-(-3)}=\frac{2}{9}$.
20. D

Average speed $=\frac{\text { total distance }}{\text { total time }}, t_{1}=\frac{60}{50}=1.2$ on the bighway, and $t_{2}=\frac{16}{20}=0.8$ on local roads.
Thereforc, Average speed $=\frac{60+16}{1.2+0.8}=\frac{76}{2}=38 \mathrm{mph}$.
21. A

Child ticket $=\$ k$ and adult ticket $=\$(k+5)$.
$6(k+5)+10 k=142 \rightarrow 16 k=112 \rightarrow k=7$ and $k+5=12$
For one adult and one child, $7+12=\$ 19$.
22. B

Average speed for 10 taxi drivers \cong Slope of the line of best fit.
Slope $=\frac{240}{4}$ or $\frac{480}{8}=60$. Thercfore, 59 is the closest to 60 .
23. B
$p(-5)=0$ means " $p(x)$ has a factor of $(x+5) . " \rightarrow$ Factor Theorem.
One possible example: $p(x)=(x+5)($?)
24. A

Solution sct of system of inequalities is as follows.

Answer Explanations

25. B

For the interval $-2.8<x<1, f(x)<|f(x)|$.
26. B
$a^{2}-b^{2}=24 \rightarrow(a+b)(a-b)=24$. Since a and b are positive integers, only two arrangements are possible.
$a+b=12$ and $a-b=2$, or $a+b=6$ and $a-b=4$. Solve each system of equations.
27. C

Since axis of symmetry is $x=3$, the y-coordinate is $y=\frac{1}{3}(3)(3-6)=-3$.
Therefore, the coordinates of verlex P is $(3,-3)$.
28. B
B
Special Triangle $30^{\circ}-60^{\circ}-90^{\circ}: A B=5, A C=5 \sqrt{3}$, and $B C=10 \rightarrow$ Pcrimeter $=15+5 \sqrt{3} \simeq 23.7$.
29. A
$\left.\begin{array}{l}x y=20 \\ y z=10\end{array}\right\}$ multiply bothside $\rightarrow(x y z)^{2}=3600 \rightarrow x y z=60$. Volume of the solid is $V=x y z=60$.
$x z=18$
30. C

Since the area of a whole circle is 4π, radius is 2 . Length of the arc is $4 \pi \times \frac{3}{4}=3 \pi$.
Therefore, perimeter is $P=3 \pi+2+2 \simeq 13.4$.
31. $\frac{3}{2}$ or 1.5

The rates are equal. If Peter takes x hours to complete the job, $\frac{1}{3}+\frac{1}{x}=\frac{1}{1} \rightarrow \frac{1}{x}=\frac{2}{3} \rightarrow x=\frac{3}{2}=1.5$.
32. 36
$\$ 10+\frac{500+20}{20}=\$ 36$
33. 7

Since $f(1)=1, k=1 . \quad f(-2 k)=f(-2)=7$.
34. $\frac{3}{2}$ or 1.5
$\frac{2 a+b}{2}=0.5(4 b) \rightarrow 2 a+b=4 b \rightarrow 2 a=3 b$. If $a=3$, then $b=2$. Therefore, $\frac{a}{b}=\frac{3}{2}$ or 1.5 .
35. 2.5

Answer Explanations

$\pi r^{2}(10)=\pi(2 r)^{2} h \rightarrow 10=4 h \rightarrow h=2.5$
36. 2
$(x+2)^{2}-8 x=0 \rightarrow x^{2}+4 x+4-8 x=0 \rightarrow x^{2}-4 x+4=0 \rightarrow(x-2)^{2}=0$
$x=2$ is the $x=2$ is the answer.
37. 80

Interest $=2000 \times 0.4=80$
38. 2081

Since $n=4$, balance $=2000\left(1+\frac{0.04}{4}\right)^{1(1)} \simeq 2081$.

Answer Explanations

Test 2 Answers and Explanations

$\begin{gathered} \text { SECTION } \\ \mathbf{3} \end{gathered}$	1,	$2{ }^{2}$	3	4	5	6	$\therefore 7$	-8\%	9	+10
	C	C	C	A	D	D	C	B	D	B
	11.	122,	13	14.	15	16:	17	-18,	19	\%20\%
	B	C	A	D	C	84	25	11	15	18
$\begin{gathered} \text { SECTION } \\ \boldsymbol{4} \end{gathered}$	1-1	2\% 20	$33^{2}=$	4 4	-5\%	6.	7	8. 8	9 ${ }^{\text {a }}$	10.80
	C	D	C	D	B	B	A	A	A	B
	11	12	13	14.	15	16	17	18	-19	20
	B	B	C	A	A	C	B	B	D	C
	21	22	23	24	25	26	27	28	29	30
	D	B	B	D	D	D	B	D	B	C
	31	+32	33	34	35	3^{36}	37	- 38		
	55	25	1	20	16	1	14	34		

SECTION 3

1. C
$z=2 \rightarrow y=z+1=3 \rightarrow x-2(3)=10 \rightarrow x=16$
2. C

To have only one solution, the slopes should be different. $\frac{2}{a} \neq \frac{6}{b} \rightarrow$ C) $\frac{2}{3} \neq \frac{6}{8}$
3. C
$265000+150 p=400 p \rightarrow 265000=250 p \rightarrow p=1060$
4. A

$$
\left(a+\frac{1}{a}\right)^{2}-2=a^{2}+2+\frac{1}{a^{2}}-2=a^{2}+\frac{1}{a^{2}}
$$

5. D

$$
\begin{aligned}
& \text { D } \\
& \sqrt{a^{2}-a+4}=2 \rightarrow a^{2}-a+4=4 \rightarrow a(a-1)=0 \rightarrow a=0 \text { or } 1(a>0)
\end{aligned}
$$

Answer Explanations

6. D

Slope of line $m=-\frac{2}{3} \rightarrow$ slope of line $m=\frac{3}{2} \rightarrow$ equation of line ℓ is $y=\frac{3}{2} x$.
For $(-3, k), \rightarrow k=\frac{3}{2}(-3) \rightarrow k=-\frac{9}{2}$
7. C

Since $b=2 a$ and $c=4 a, \rightarrow \frac{a+b+c}{3}=\frac{a+2 a+4 a}{3}=\frac{7 a}{3}$.
8. B

The hexagon has 6 equilateral triangles with side of 4. The area of a equilateral triangle with side s is $\frac{s^{2} \sqrt{3}}{4}$. Therefore, the area oh the hexagon is $\frac{16 \sqrt{3}}{4} \times 6=24 \sqrt{3}$.
9. D

$$
x^{2}-4=0 \rightarrow(x+2)(x-2)=0 \rightarrow x=2,-2
$$

The graph of $y=2 x+b$ passes through point $(-2,0) . \rightarrow 0=2(-2)+b \rightarrow b=4$
10. B

$$
\frac{1}{2}\left(\frac{1}{x-1}-\frac{1}{x+1}\right)=\frac{1}{2}\left(\frac{x+1-(x-1)}{x^{2}-1}\right)=\frac{1}{2}\left(\frac{2}{x^{2}-1}\right)=\frac{1}{x^{2}-1}
$$

11. B

$$
\begin{aligned}
& \mathrm{B} \\
& S=2 \pi r^{2}+2 \pi r h \rightarrow 20 \pi=2 \pi r^{2}+2 \pi r(3) \rightarrow r^{2}+3 r-10=0 \rightarrow(r+5)(r-2)=0 \rightarrow r=2
\end{aligned}
$$

12. C

$$
R=\frac{\left(m_{1}+m_{2}\right)}{m_{1}} \rightarrow R m_{1}=m_{1}+m_{2} \rightarrow R m_{1}-m_{1}=m_{2} \rightarrow m_{1}(R-1)=m_{2} \rightarrow m_{1}=\frac{m_{2}}{R-1} .
$$

13. A
$f(x)=x^{2}+a x-10 \rightarrow f(2)=4+2 a-10=0 \rightarrow a=3 \rightarrow$ Therefore, $f(x)=x^{2}+3 x-10$
$x^{2}+3 x-10=0 \rightarrow(x+5)(x-2)=0 \rightarrow x=-5,2 \rightarrow f(-5)=0$
14. D

$$
\begin{aligned}
& \mathrm{D} \\
& 2 a=b \text { and } 4 a+2=-10 \rightarrow a=-3 \rightarrow b=-6
\end{aligned}
$$

15. C
$\frac{S}{8}=\frac{S}{10}+5$

Answer Explanations

16. 84

The equation of line $m \rightarrow y=\frac{1}{3} x+5 \rightarrow f(12)=\frac{1}{3}(12)+5=9 \rightarrow C D=9$
Area $=\frac{(5+9) \times 12}{2}=84$
17. 25

$$
100+5 x=25+8 x \rightarrow 3 x=75 \rightarrow x=25 \text { weeks }
$$

18. 11

$$
a=8, b=5 \text {, and } c=-2 \rightarrow \text { Therefore, } a+b+c=11 \text {. }
$$

19. 15

$$
r \theta=\ell \rightarrow r\left(\frac{\pi}{5}\right)=3 \pi \rightarrow r=15
$$

20. 18

	Boys	Girls	Total
$10 \uparrow$	18	10	28
$10 \downarrow$	22	20	42
Total	40	30	70

SECTION 4

1. C

$$
0.6(k-40)=0.6 k-24
$$

2. D
$\frac{3}{k}=\frac{p}{x} \rightarrow x=\frac{p k}{3}$
3. C
$\angle 1+\angle 2=90$ and $\angle 1=\angle 2+20 \rightarrow \angle 2+20+\angle 2=90 \rightarrow \angle 2=35 \rightarrow \angle 1=35+20=55$
4. D
5. B

Slope is $\frac{20-10}{4-2}=5 \rightarrow$ The equation is $y=5 x+a \rightarrow a=0 \rightarrow$ when $x=15, b=5(15)=75$.
Thercfore, $a+b=0+75=75$.

Answer Explanations

6. B The graph of $y=5 x$ is B.
7. A

Since $a=2 b-5, \frac{a-5}{2 b}=\frac{2 b-5-5}{2 b}=\frac{2 b-10}{2 b}=\frac{1}{2} . \rightarrow b=10 \rightarrow a=2(10)-5=15$
8. A

$$
\frac{60-10}{3} \approx 16.6 \rightarrow 16 \text { rides }
$$

9. A
10. B

$$
\text { Slope }=\frac{18-10}{7-3}=2 \rightarrow \frac{f(5)-f(3)}{5-3}=2 \rightarrow \frac{f(5)-10}{2}=2 \rightarrow f(5)=14
$$

11. B

$$
\text { Since } x+y=50, y=50-x . \quad \rightarrow \text { Arca }=x y=x(50-x)=50 x-x^{2}
$$

12. B

If $y=25, x=25$. Area $=25 \times 25=625$
13. C

Since 4 increases over 10 years, $\frac{4}{10}=\frac{x}{15} \rightarrow x=6$ from $2000 \rightarrow 23.6+6=29.6$
14. A

Since $a+b=99$, the largest possible area is $24 \times 25=600$.
15. A

$$
z=3+2 i \rightarrow z^{2}=(3+2 i)^{2}=5+12 i \rightarrow \text { Quadrant } \mathrm{I}
$$

16. C
$a=30^{\circ}$ and $\angle A=60^{\circ} \rightarrow A B=2 \sqrt{3}$
17. B

$$
\text { At } x=3,8000=1000 b^{3} . \rightarrow b=2
$$

18. B

$$
f(5)=1,000(2)^{5}=32,000
$$

19. D

Answer Explanations

There are 20 girls in the median measure. Therefore, total number of girls is $\frac{20}{50}=\frac{x}{500} \rightarrow x=200$.
20. C

$$
x^{2}-2 x+y^{2}=10 \rightarrow(x-1)^{2}+y^{2}=11 \rightarrow \text { Center is at }(1,0)
$$

21. D

Slope of line ℓ is
$-\frac{1}{2} . \rightarrow a=2 \rightarrow y=2 x \div b \rightarrow$ Putting (2,1) in the equation $\rightarrow 1=2(2)+b \rightarrow b=-3$
22. B

$$
2^{3 k-3}=64 \rightarrow 2^{3 k-3}=2^{6} \rightarrow 3 k-3=6 \rightarrow 3 k=9 \rightarrow k=3 \rightarrow \text { Therefore, } 2^{3}=8
$$

23. B
24. D

The quadratic graph must be below the graph of $y=5$. Therefore, D is correct.
25. D

Ratio of areas of $\triangle B D C: \triangle E F C=4: 1$. The area of the shaded region is three times the area of $\triangle E F C$. Therefore, the area is $3 \times 10=30$.
26. D
$x-y=5 \rightarrow(x-y)^{2}=25 \rightarrow x^{2}+y^{2}-2 x y=25 \rightarrow x^{2}+y^{2}=25+2 x y=25+20=45$
27. B

If $C(a, b) \rightarrow$ Mid point $\left(\frac{a+(-3)}{2}, \frac{b+(-2)}{2}\right)=\left(\frac{1+0}{2}, \frac{10+(-6)}{2}\right)$.
$a+(-3)=1 \rightarrow a=4$ and $b+(-2)=10+(-6) \rightarrow b=6 \rightarrow C(4,6)$
28. D

If $b=3, a$ is the greatest. $a^{2}+9=25 \rightarrow a^{2}=16 \rightarrow a=4$
Or

29. B

Since $\frac{s^{2} \sqrt{3}}{4}=25 \sqrt{3}, s=10 . \rightarrow$ Therefore, the area of the aquare is 100 .

Answer Explanations

30. C

$$
\frac{400-160}{7-3}=60
$$

31. 55

$$
\frac{30}{3}=\frac{x}{5.5} \rightarrow x=55
$$

32. 25

$$
\text { Median=average } \rightarrow \text { The fifth number is 19. } \rightarrow \text { Therefore, } a_{8}=19+2 \times 3=25 \text {. }
$$

33. 1

$$
f(g(k))=-3 \rightarrow g(k)=-2 \rightarrow k=1 \text { or }-1 \rightarrow|k|=1
$$

34. 20

Axis of symmetry $=\frac{-(-k)}{2(5)}=\frac{k}{10}=2 \rightarrow k=20$
35. 16

The amount of alcohol before and after must be same.
$\frac{10}{100} \times 20+\frac{20}{100} \times 30=\frac{x}{100} \times 50 \rightarrow 200+600=50 x \rightarrow x=16 \rightarrow 16 \%$
36. 1

37. 14

Define: fixed charge $=a$ and charge per minute $=b$
$C=a+20 b=24$ and $C=a+35 b=31.5 \quad \rightarrow a=14$ and $b=0.5$
38. 34

$$
C=14+40(0.5)=\$ 34
$$

Answer Explanations

Answers and Explanations										
SECTION3	1.	2	3.	4, 4	5	66	7	8	9.	10.
	C	B	D	A	D	D	A	B	B	A
	11	12.	13.	14	15.	16.	17	18	19	20
	C	A	A	B	C	2	3	130	144	1/4
$\begin{gathered} \text { SECTION } \\ \mathbf{4} \end{gathered}$	1	22,	-3,	-4.	5, 5	- 6.	7	8.2	9.	10
	D	D	D	B	C	B	B	B	A	A
	11	12.	13.	+14.	15.	16.	17	18	19	20.
	C	D	D	C	A	D	C	A	A	C
	21.	22	23	24	25	$\bigcirc 26$	27	28	29	30
	D	C	C	D	C	B	C	D	B	C
	31.	32	33	34	35	36	37.	38		
	36	15	128	4	47.7	1	134	6800		

4

SECTION 3

1. C
40% of $40=0.4 \times 40=16$
2. B

$$
3 r=5 \rightarrow 6 r=10 \rightarrow 6 r+5=15
$$

3. D

$$
\frac{1}{a^{2}}=\frac{1}{5} \rightarrow a^{2}=5 \rightarrow 5 a^{2}=25
$$

4. A

$$
p=10 k+r \rightarrow r=p-10 k
$$

5. D

$$
\frac{5}{12}=\frac{1}{a}+\frac{1}{b} \rightarrow \frac{5}{12}=\frac{a+b}{a b} \rightarrow \frac{5}{12}=\frac{a+b}{24} \rightarrow a+b=10
$$

6. D

$$
-x^{2}+9=5 \rightarrow x^{2}=4 \rightarrow x= \pm 2 \rightarrow \text { Therefore, } A T=4 .
$$

Answer Explanations

7. A

$$
\text { Arca }=\frac{(2+6) 8}{2}=32
$$

8. B

$$
\frac{a}{3}=\frac{-b}{1}=\frac{9}{3}=\frac{3}{1} \rightarrow a=9 \text { and } b=-3 \rightarrow a+b=6
$$

9. B

$$
g(3)=0 \text { and } g(-2)=0 \rightarrow(x-3) \text { and }(x+2) \text { arc factore of } g(x)
$$

10. A

$$
x^{2} y=k \rightarrow 4 \times 10=100 y \rightarrow y=\frac{40}{100}=\frac{2}{5}
$$

11. C

$$
y=k(x-4)(x+2) \rightarrow \text { Axis of symmetry }=\frac{4+(-2)}{2}=1=a
$$

12. A

$$
P R=Q R=7 \rightarrow k=-1+7=6
$$

13. A
$\frac{2 i}{1-i}=a+b i \rightarrow \frac{2 i(1+i)}{(1-i)(1+i)}=\frac{-2+2 i}{2}=-1+i \rightarrow a=-1$
14. B

$$
\frac{1}{x}=\frac{x}{2 x+1} \rightarrow x^{2}-2 x-1=0 \rightarrow x=\frac{2 \pm \sqrt{8}}{2}=1 \pm \sqrt{2}
$$

15. C
16. 2
$x^{2}-a x=-10 \rightarrow x^{2}-a x+10=0 \rightarrow$ Product of the roots is $10 . \rightarrow 5 \times(2)=10$
The other root is 2 .
Or.
Five is one of the roots.

$$
5^{2}-5 a=-10 \rightarrow a=7 \rightarrow x^{2}-7 x+10=0 \rightarrow(x-5)(x-2)=0 \rightarrow \text { The other root is } 2
$$

7. 3

$$
\frac{15}{x-1}-7=3-\frac{5}{x-1} \rightarrow 15-7(x-1)=3(x-1)-5 \rightarrow x=3
$$

3. D
4. B
$\frac{15}{45}=\frac{1}{3}$

	Subject		Total
Gender	Art	Music	
Males	30		65
Females	15	20	35
Total	45		100

5. C

$$
\frac{40+50+60+70+80+80+90+100}{8}=71.25
$$

6. B

The greatest change in scores is $90-40=50$.
7. B
8. B
$x^{2}-2 x+y^{2}+2 y-3=0 \rightarrow(x-1)^{2}+(y+1)^{2}=5 \rightarrow$ Radius is $\sqrt{5} . \rightarrow$ Diameter is $2 \sqrt{5}$.

Answer Explanations

9. A

$$
\begin{aligned}
4 x-y & =12 \\
-x-4 y & =-3
\end{aligned} \quad \rightarrow 3(x+y)=15 \rightarrow x+y=5
$$

10. A

$$
\left(a^{k}\right)^{\frac{2}{3}}=\frac{1}{a^{2}} \rightarrow a^{\frac{2}{3} k}=a^{-2} \rightarrow \frac{2}{3} k=-2 \rightarrow k=-3
$$

11. C

$$
\text { Since } C E=8, \frac{8}{300}=\frac{10}{A B} . \rightarrow A B=\frac{3000}{8}=375
$$

12. D

$$
\begin{aligned}
& \text { D } \\
& 2 x^{2} y-3 x y^{2}-x y(3 x+5 y-2)=2 x^{2} y-3 x y^{2}-3 x^{2} y-5 x y^{2}+2 x y=-x^{2} y-8 x y^{2}+2 x y
\end{aligned}
$$

$$
=-x y(x+8 y-2)
$$

13. D

Since $O T$ (radius) $=10$ and $\angle T O M=60^{\circ}, \overparen{T M}=20 \pi \times \frac{1}{6}=\frac{10 \pi}{3}$.
14. C Two numbers are $3 k$ and $7 k . \rightarrow 10 k-12=38 \rightarrow k=5 \rightarrow$ Therefore, the averagc is $\frac{3 k+7 k}{2}=25$.
15. A

Since y-intercept is $-m$ and x-intercept is $1, O P=m$ and $O R=1$. Therefore, the area of $\triangle O P R$ is $\frac{m \times 1}{2}=\frac{m}{2}$.
16. D

Combined rate $=\frac{1}{3}-\frac{1}{4}=\frac{1}{12}$ per hour
Therefore, $1 \div \frac{1}{12}=12$ hours.

17. C
$\frac{1}{R}+\frac{1}{S}=\frac{1}{T} \rightarrow \frac{1}{S}=\frac{1}{T}-\frac{1}{R}=\frac{R-T}{T R} \rightarrow S=\frac{T R}{R-T}$
18. A

$$
36 t-6 t^{2} \geq 48 \rightarrow t^{2}-6 t+8 \leq 0 \rightarrow(t-2)(t-4) \leq 0 \rightarrow 2 \leq t \leq 4 \rightarrow 4-2=2 \text { seconds }
$$

Answer Explanations

19. A

$$
\frac{700-200}{12} \approx 42
$$

20. C

Club A: $c=\frac{800}{12} x$ Club B: $c=\frac{500}{12} x+200 \rightarrow \frac{500}{12} x+200=\frac{800}{12} x \rightarrow 200=25 x \rightarrow x=8$
Therefore, the total cost each club is $\frac{500}{12} \times 8+200 \approx 533$.
21. D

Graph opens downward and its maximum is less than 5 .
22. C

$$
D(0.1)-D(0.2)=6 \rightarrow(30-0.01 a)-(30-0.04 a)=6 \rightarrow 0.03 a=6 \rightarrow a=\frac{6}{0.03}=200
$$

23. C
$51020202530 \rightarrow$ mean $=18.3$, median $=20$, and modc $=20$
24. D

Since $a+b=90, \triangle D E F$ is a right triangle.
25. C
$n=$ number of students: $\rightarrow \frac{1}{3} \times \frac{2}{5} \times \frac{2}{3}(n)=\frac{4}{45} n=$ integer $\rightarrow n$ must be multiples of 45 .
26. B
volume of the cylinder: $\pi r^{2}(10)=1911 \rightarrow$ volume of the circular cone: $\frac{\pi r^{2}(10)}{3}=637$
Volume of the silo is $1911+637=2548$.
27. C
$x^{2}-5 x<0 \rightarrow x(x-5)<0 \rightarrow 0<x<5 \rightarrow$ integers of $x: 1,2,3,4$
28. D

$$
x=2 b+12
$$

$2 b+12=a+8 \rightarrow a=2 b+4$
$2 a=5 b \rightarrow a=2.5 b$ Putting in the equation $2.5 b=2 b+4 \rightarrow 0.5 b=4 \rightarrow b=8$
Therefore, $x=2(8)+12=28$.
Area of the square is $28^{2}=784$.

Answer Explanations

29. B

Ratio of corresponding sides of the similar triangles is $3: 2: 1$. Ratio of their areas is $9: 4: 1$.
The areas in terms of k are $9 k, 4 k$, and k. Since $9 k=81 \rightarrow k=9$, the area of the shaded region is $3 k=27$.

30. C

$$
\begin{aligned}
& C \\
& a-b=\sqrt{5} \text { and } 3 \sqrt{5}=a+b \rightarrow a^{2}-b^{2}=(a+b)(a-b)=(\sqrt{5})(3 \sqrt{5})=15
\end{aligned}
$$

31. 36
(a, b) is a point of intersection of two graphs.
$f(x)=3 x+4$ and $g(x)=2 x+12 \rightarrow 3 x+4=2 x+12 \rightarrow x=8$ and $y=28$
Therefore, $a+b=8+28=36$.
32. 15
$n=$ number of students \rightarrow The number of books: $5 n+10=7 n-20 \rightarrow n=15$
33. 128

Find the zeros of $y=-x^{2}+16 \rightarrow x^{2}=16 \rightarrow x= \pm 4$
When $x=4, y=4^{2}-32=16$. Therefore, $A B=8$ and $B C=16$. Area of $\square A B C D$ is $8 \times 16=128$.
34. 4
$g(3)=f(0)=b=5$ and $g(4)=f(1)=1+a+b=10 \rightarrow 1+a+5=10 \rightarrow a=4$
35. 47.7

Since $r \theta=10 \rightarrow r=\frac{10}{\frac{\pi}{3}}=\frac{30}{\pi} \rightarrow$ Area of the sector $=\frac{1}{2} r^{2} \theta=\frac{1}{2}\left(\frac{30}{\pi}\right)^{2}\left(\frac{\pi}{3}\right) \approx 47.7$
Or
$\frac{\pi}{3}=60^{\circ} \rightarrow 2 \pi r \times \frac{1}{6}=10 \rightarrow r=\frac{30}{\pi} \rightarrow$ Area of the shaded region $=\pi r^{2} \times \frac{1}{6}=\pi\left(\frac{30}{\pi}\right)^{2} \times \frac{1}{6}=\frac{900}{6 \pi} \approx 47.7$
36. 1
$P(x)=x^{2}+4 x-k \rightarrow P(0)=-k=5 \rightarrow k=-5 \rightarrow P(x)=x^{2}+4 x+5$
$P(x)=(x+2)^{2}+1 \rightarrow P$ has a minimum 1 at $x=-2$.
37. 134

Profit $=R-C \geq 0 \rightarrow 100 x \geq 85 x+2000 \rightarrow 15 x \geq 2000 \rightarrow x \geq 133.333 \rightarrow x=134$
38. 6800 ($100 x-85 x-2,000 \geq 100,000 \rightarrow 15 x \geq 102,000 \rightarrow x \geq 6800 \rightarrow x=6800$

Answer Explanations

Test 4 Answers and Explanations

$\begin{gathered} \text { SECTION } \\ 3 \end{gathered}$		2	3 3	4	5		-7.	88,	9	10
	B	A	D	A	D	C	D	D	B	B
	-11-	22,	13	14.	15	16.	17	18	19	20
	B	B	A	B	D	9.6	5	2.25	160	30
$\begin{gathered} \text { section } \\ 4 \end{gathered}$	- 1 1,	- 2 ,	-3.	4,	-5	\% 6 \%	7	-8,	- 9^{2}	10
	A	D	B	B	A	B	C	D	D	D
	-11	12	13	14 ,	15	16	17.	18	19	20
	D	D	C	D	B	B	A	B	C	D
	21	22.	23	24	25.	26.	27.	28	29.	30
	B	C	D	A	D	C	C	D	C	B
	31.	32	, 33	\% 34	35.	36	37	38		
	2	4	9	50	8^{\prime}	22.5	2	9/4		

SECTION 3

I. B

$$
x^{2}+1 \geq 1 \text { for all real numbers } x \text {. }
$$

2. A $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \rightarrow \frac{f(5)-f(2)}{3}=\frac{f(5)-f(2)}{5-2}=2$
3. D

Same slope; $\frac{3-(-2)}{a-b}=\frac{1}{2} \quad \rightarrow \quad \frac{5}{a-b}=\frac{1}{2} \quad \rightarrow a-b=10$
4. A

In order to have no solution, two lines have same slopes but different y-intercepts.
$3 y=-2 x+4 \rightarrow y=-\frac{2}{3} x+\frac{4}{3} \rightarrow m=-\frac{2}{3}$
5. D

Replace x with $(1-x)$: $f(1-x)=(1-x+1)^{2}-(1-x-1)-1=x^{2}+x-1$

Answer Explanations

6. C

Find the zeros; $-x^{2}+16=0 \rightarrow x^{2}-16=0 \rightarrow(x+4)(x-4)=0 \rightarrow x=4,-4 \rightarrow A B=8$
$O B=f(0)=16$. The area of $\triangle A B C$ is $\frac{8 \times 16}{2}=64$.
7. D
$\frac{a-2 b}{b}=\frac{a}{b}-2 \rightarrow \frac{a}{b}-2=\frac{2}{3} \rightarrow \frac{a}{b}=2+\frac{2}{3}=\frac{8}{3}$
8. D

Since $(4,16)$ is the solution; $16=m \sqrt{4}$ and $16=4 m-k .16=2 m \rightarrow m=8$. Put this number in the equation. $16=4(8)-k \rightarrow k=16$
9. B

Find the x-coordinates of points A and $T .(x-10)^{2}=25 \rightarrow x-10=5,-5 \rightarrow x=15$ or 5 Therefore, $M H=15-5=10$.
10. B $7 x=9 x-2 x+10 \rightarrow 7 x=7 x+10 \rightarrow 0=10(?)$ For any values of x, it CANNOT be equal.
11. B

The axis of symmetry is $x=a$, which is the midpoint of the zeros. $a=\frac{-4+10}{2}=3$

$$
b=f(a)=f(3)=k(3+4)(3-10)=-7 \rightarrow-49 k=-7 \rightarrow k=\frac{1}{7}
$$

12. B Exterior angle theorem.
13. A
$\frac{5 x^{2}+k x+1}{x-1}=a x+1+\frac{2}{x-1} \rightarrow \frac{5 x^{2}+k x+1}{x-1}=\frac{(a x+1)(x-1)+2}{x-1} \rightarrow$
$\frac{5 x^{2}+k x+1}{x-1}=\frac{a x^{2}+(1-a) x+1}{x-1} \rightarrow a=5$ and $1-a=k \rightarrow$ Therefore, $k=-4$.
14. B

$$
4(x-2)^{2}-1=5 \rightarrow 4(x-2)^{2}=6 \rightarrow(x-2)^{2}=\frac{6}{4} \rightarrow x-2= \pm \frac{\sqrt{6}}{2} \rightarrow x=2 \pm \frac{\sqrt{6}}{2}
$$

15 D

Grade	For	Against	Total
Junior	60	40	100
Senior	70	130	200
Total	130	170	300

Answer Explanations

16. 9.6
$\frac{B C^{\prime}}{20}=\cos x=0.8 \rightarrow B C=16 \quad$ By Pythagorean Theorem; $A B=12$
The area of the triangle; $\frac{12 \times 16}{2}=\frac{20 \times B D}{2} \rightarrow B D=\frac{12 \times 16}{20}=9.6$
17. 5

$$
2 x^{3}-10 x^{2}+5 x-25=0 \rightarrow 2 x^{2}(x-5)+5(x-5)=0 \rightarrow(x-5)\left(2 x^{2}+5\right)=0 \rightarrow x=5
$$

18. 2.25 or $\frac{9}{4}$
$\triangle A B P$ and $\triangle C D P$ are similar. The ratio of the corresponding sides are 9:3. The ratio of h_{1} to h_{2} is also 9:3. Therefore, $h_{1}=9$ and $h_{2}=3$.

$\triangle A P Q$ and $\triangle A D C$ are similar. $\frac{P Q}{3}=\frac{9}{12} \rightarrow P Q=\frac{3 \times 9}{12}=\frac{9}{4}=2.25$
19. 160

Plan A: $C=0.25 x \quad$ Plan $\mathrm{B}:\left\{\begin{array}{l}C=40 \text { if } 0 \leq x \leq 200 \\ C=40+0.15(x-200)\end{array}\right.$ if $x>200 \quad x=$ number of texts
First you need to check the value of x in the interval $0 \leq x \leq 200$.
$0.25 x=40 \rightarrow x=\frac{40}{0.25}=160\left(\mathrm{OK}_{-}\right)$
The graphs of the two plans will be as follows.
20. 30

For plan A: $C=0.25 \times 400=\$ 100$
For plan B: $C=40+0.15(400-200)=\$ 70$ $100-70=30$
She can save $\$ 30$.

Answer Explanations

SECTION 4

1. A

$$
\left\{\begin{array}{l}
2 m+3 g=20 \\
3 m+2 g=15
\end{array} \rightarrow 5 m+5 g=35 \rightarrow m+g=7\right.
$$

2. D
$\%$ of Geometry $=100-(39+16+25)=20 \quad$ Algebra has 19% more than Geometry.
Therefore, the number of students $=200 \times 0.19=38$.
3. B

Slope $=\frac{b-a}{2-(-1)}=\frac{9}{3}=3$, slope between $(1, k)$ and $(0,5)$ is also 3. Therefore, $\frac{k-5}{1-0}=3 \rightarrow k=8$.
4. B
P (against) $=\frac{33}{100}$
Expected number $=800 \times \frac{33}{100}=264$
5. A

$$
(2,35) \rightarrow(7,45)
$$

Gender	For	Against	Total
Boys	35	10	45
Girls	32	23	55
Total	67	33	100

Average growth is $\frac{45-35}{7-2}=2$ inches per year
6. B

$$
\frac{45-30}{30} \times 100=50 \%
$$

7. C

The slopes are equal. $\frac{0-b}{7-0}=\frac{3-0}{0-(-1)} \rightarrow-\frac{b}{7}=\frac{3}{1} \rightarrow b=-21$
8. D
$x^{2}-8 x+y^{2}=0 \rightarrow(x-4)^{2}+y^{2}=16 \rightarrow$ Therefore, the area of the circle is $\pi r^{2}=16 \pi$
9. D

When $x=3, f(3-5)=f(-2)=3(3)-10=-1$
10. D

Rate $=\frac{4-20}{8}=-2 \rightarrow$ Therefore, $T=20-2 d$.
11. D

Answer Explanations

12. D
$A=10,000(1-0.3)(1+0.3)=10,000(1-0.09) \rightarrow 9 \%$ decreased.
13. C
$y=-\frac{a}{b} x+\frac{5}{b} \rightarrow$ Positive slope and positive y-intercept $\rightarrow b>0$ and $a<0$
14. D

$$
\frac{\pi r^{2} h}{3}=200 \pi \rightarrow \frac{\pi(25) h}{3}=200 \pi \rightarrow h=24
$$

15. B
$-x^{2}+6 x=0 \rightarrow x(x-6)=0 \rightarrow O Q=6$ and the height of $\triangle O P Q=9(\because f(3)=-9+18=9)$
Area $=\frac{6 \times 9}{2}=27$
16. B
$\frac{1}{8}+\frac{1}{6}=\frac{7}{24} \rightarrow \frac{7}{24} \times 3=\frac{7}{8} \rightarrow 1-\frac{7}{8}=\frac{1}{8}$
17. A

$$
3 \leq P Q \leq 17
$$

18. B

$$
\text { Slope }=\frac{30}{2}=15 \rightarrow y=15 x+20 \rightarrow \text { For } 200 \text { dcsks } y=15(200)+20=\$ 3020
$$

19. C

$$
D(x)=k(x-10)(x-50)=0 \rightarrow x=10,50 \rightarrow 50-10=40 \text { meters }
$$

20. D

Putting $(30,-50)$ in the equation $\rightarrow-50=k \cdot(30-10)(30-50) \rightarrow k=\frac{-50}{-400}=\frac{1}{8} \quad$ an...
21. B Since $\sin a=\cos b, B D=B C \times \cos b=20 \times 0.35=7$
22. C

$$
r(x)=3 x^{3}-x-2 \rightarrow r(1)=3-1-2=0
$$

23. D
24. A

Answer Explanations

25. D

Since circumference is $16,2 \pi r=16 \rightarrow r=\frac{8}{\pi} \rightarrow$ Area of the sector $=\pi r^{2} \times \frac{3}{4}=\pi\left(\frac{64}{\pi^{2}}\right) \times\left(\frac{3}{4}\right)=\frac{48}{\pi}$
26. C

$$
k-1=a \text { and } 3 k=24 \rightarrow k=8 \text { and } a=7
$$

27. C
$y=8$ or $y=-5$ have three solutions with $y=f(x)$.
28. D

Slopes between two points are constant. $\frac{8-4}{4}=\frac{\sqrt{k}-8}{8} \rightarrow \sqrt{k}-8=8 \rightarrow k=256$
29. C
$a+2 b=52, b+2 c=82$, and $c+2 a=46 \rightarrow$ addition $\rightarrow 3(a+b+c)=180 \rightarrow a+b+c=60$
Therefore, the average is $\frac{a+b+c}{3}=\frac{60}{3}=20$.
30. B

Since the area of a sector is $\frac{1}{2} r^{2} \theta$, where θ is in radian. $\rightarrow \frac{1}{2} r^{2}\left(\frac{2 \pi}{5}\right)=20 \pi$
$r^{2}=100 \rightarrow r=10 \rightarrow O R=10 \times \frac{5}{2}=25 \rightarrow \overparen{R S}=25 \times \frac{2 \pi}{5}=10 \pi$
31. 2
$g(1)=2 f(1)-1=3 \rightarrow f(1)=2$
32. 4
$k \nabla(k-2)=2 \nabla 3 \rightarrow k(k-2)-k+1=(2)(3) \cdots 2+1 \rightarrow k^{2}-3 k+1=5 \rightarrow k^{2}-3 k-4=0$
$\rightarrow(k-4)(k+1)=0 \rightarrow k=4$ or $-1 \rightarrow$ Therefore, $k=4$.
33. 9
$4 m+5 n=2.5(4 n) \rightarrow 4 m=5 n \rightarrow$ when $m=5, n=4$
Thercfore, $\frac{m+n}{m-n}=\frac{5+4}{5-4}=9$
34. 50

Since the area of $\triangle A B M$ is 20 , the area of $\triangle M D B$ is $20 \times \frac{3}{2}=30$.
Therefore, the area of $\triangle A M D$ is 50 .
(\therefore The area of the shaded region is equal to the area of the unshaded region.)

Answer Explanations

35. 8

Since $\Delta P=2000, \frac{\Delta P}{\Delta t}=250 \rightarrow \frac{2000}{\Delta t}=250 \rightarrow \frac{2000}{250}=8$
36. 22.5

Since $D E+D F=10, D F=10 \times \frac{3}{4}=7.5$.
Therefore, the perimeter is $7.5 \times 3=22.5$
37. 2

Since sum of the root is $\frac{8}{3}$ and product of the roots is $\frac{4}{3}, \frac{1}{a}+\frac{1}{b}=\frac{a+b}{a b}=\frac{8 / 3}{4 / 3}=2$.
Or
$3 x^{2}-8 x+4=0 \rightarrow(3 x-2)(x-2)=0 \rightarrow x=\frac{2}{3}, 2 \rightarrow \frac{1}{a}+\frac{1}{b}=\frac{3}{2}+\frac{1}{2}=2$
38. $\frac{9}{4}$

Quadratic function: $y=a(x-3)^{2}-4 \rightarrow$ putting $(0,0)$ in the equation $\rightarrow 0=9 a-4 \rightarrow a=\frac{4}{9}$
The zeros of the quadratic function are 0 and 6 . Therefore, the equation of the linc is $y=x-6$.
$\frac{4}{9}(x-3)^{2}-4=x-6 \rightarrow 4(x-3)^{2}-36=9 x-54 \rightarrow 4 x^{2}-33 x+54=0 \rightarrow(4 x-9)(x-6)=0$
$x=\frac{9}{4}$ or $x=6 \rightarrow$ Therefore, $r=\frac{9}{4}$.

Answer Explanations

Test 5 Answers and Explanations

SECTION 3

1. C

$$
4 r-35=4 s+13 \rightarrow 4 r-4 s=35+13 \rightarrow 4(r-s)=48 \rightarrow r-s=12
$$

2. B
$x^{2}-y^{2}=35 \rightarrow(x+y)(x-y)=35 \rightarrow 5(x-y)=35 \rightarrow x-y=7$
$x+y=5$
Addition: $2 x=12 \rightarrow x=6$
3. C
$\left(x-\frac{1}{x}\right)^{2}+4 \rightarrow x^{2}-2+\frac{1}{x^{2}}+4 \rightarrow x^{2}+2+\frac{1}{x^{2}} \rightarrow\left(x+\frac{1}{x}\right)^{2}$
4. A

If $\cos a=\sin b$, then $a+b=90 \rightarrow a+b=3 x+20+x-10=4 x+10 \rightarrow 4 x+10=90 \rightarrow x=20$
5. A

$$
B C=10 \text { and } A C=10 \sqrt{3} \rightarrow \text { Area of } \triangle \mathrm{ABC}=\frac{10 \times 10 \sqrt{3}}{2}=50 \sqrt{3}
$$

Answer Explanations

6. B

$$
\sqrt{-6} \cdot \sqrt{-24}=(i \sqrt{6})(i \sqrt{24})=i^{2} \sqrt{144}=(-1)(12)=-12
$$

7. D

$$
0=750+10 a \rightarrow a=\frac{-750}{10}=-75
$$

8. A

$$
\frac{180}{75}=2.4
$$

9. C

$$
\begin{aligned}
& \mathrm{C}=\frac{A-d}{B+d} \rightarrow P B+P d=A-d \rightarrow P d+d=A-P B \rightarrow d(P+1)=A-P B \rightarrow d=\frac{A-P B}{P+1}
\end{aligned}
$$

10. D
$a=$ length of an edge $\rightarrow \sqrt{a^{2}+a^{2}+a^{2}}=12 \rightarrow 3 a^{2}=144 \rightarrow a^{2}=48$
Surface area $=6 a^{2}=6 \times 48=288$
11. A
$A=\frac{1}{2} B+50 \rightarrow A+B=\frac{1}{2} B+50+B=500 \rightarrow \frac{3}{2} B=450 \rightarrow B=450 \times \frac{2}{3}=300$
Therefore, $A=500-300=200$.
12. D $A=25+0.2 x$ and $B=40+0.08 x \rightarrow 25+0.2 x=40+0.08 x \rightarrow 0.12 x=15 \rightarrow x=125$
13. D

$$
\frac{10 x+5}{x-1} \rightarrow \frac{10(x-1)+15}{x-1}=10+\frac{15}{x-1}
$$

14. B

Tiger: $d=20 \times 88=1760$
Prey: $d=500+20 p=1760 \rightarrow 20 p=1260 \rightarrow p=63$
15. D

$$
P(x)=5 x^{2}-3 x+4=(x-2) Q(x)+R \rightarrow P(2)=20-6+4=R \rightarrow 18=R
$$

16. 10

$$
R^{2}-S^{2}=19 \rightarrow(R+S)(R-S)=19 \rightarrow R+S=19 \text { and } R-S=1 \rightarrow 2 R=20 \rightarrow R=10
$$

Answer Explanations

17. 100

In group A, there are 40 boys and 50 girls. In group B, there are $3 k$ boys and $2 k$ girls.
$\frac{40+3 k}{50+2 k}=\frac{10}{9} \rightarrow 360+27 k=500+20 k \rightarrow 7 k=140 \rightarrow k=20$
Therefore, the number of students in group B is $5 k=5(20)=100$.
18. 3

Identical equation: $a-1=0, b-2=0$, and $c=0 \rightarrow a=1, b=2, c=0 \rightarrow a+b+c=3$
19. $20 / 3$
$\frac{3}{r}=\frac{p}{5}=\frac{12}{6}=\frac{2}{1} \rightarrow r=\frac{3}{2}$ and $p=10 \rightarrow \frac{p}{r}=\frac{10}{3 / 2}=\frac{20}{3}$
20. 56

Ratio of areas of $\triangle D B E: \triangle A B C=1: 4 \rightarrow k$ and $4 k$
The area of the shaded region $=4 k-k=3 k=42 \rightarrow k=14$
Therefore, the area of $\triangle A B C=4 k=4 \times 14=56$.

SECTION 4

1. C
2. D

$$
\frac{P}{4}=\frac{S}{x} \rightarrow x=\frac{4 S}{P}
$$

3. D

$$
f(7-5)=5(7)-14=21
$$

4. B
5. C

$$
\frac{L}{W}=k \rightarrow \frac{25}{10}=2.5=k \rightarrow L=k W=2.5 W
$$

6. B

$$
33=2.5 \mathrm{~V} \text { } \rightarrow W=\frac{33}{2.5}=13.2
$$

7. B

$$
20 x \geq 650-500 \rightarrow 20 x \geq 150 \rightarrow x \geq 7.5 \rightarrow x=8
$$

Answer Explanations

8. A

$$
\begin{aligned}
& 4^{a+b}=8 \text { and } 9^{a-b}=81 \rightarrow 2^{2(a+b)}=2^{3} \text { and } 3^{2(a-b)}=3^{4} \\
& a+b=\frac{3}{2} \text { and } a-b=\frac{4}{2}=2 \rightarrow a^{2}-b^{2}=(a+b)(a-b)=\frac{3}{2} \times 2=3
\end{aligned}
$$

9. B
$f(x+2-2)=3(x+2)-5 \rightarrow f(x)=3 x+1$
10. D

Slope of line m is $-\frac{2}{3}$. The equation of line ℓ is $y=\frac{3}{2} x .(6,9)$ lies on this graph.
11. C

$$
5 a+b=a-2 b \rightarrow 4 a=-3 b \rightarrow \frac{a}{b}=\frac{-3}{4}
$$

12. B
13. B
$a x+b y=5 \rightarrow y=-\frac{a}{b} x+\frac{5}{b} \quad \rightarrow y=-\frac{-b}{b} x+\frac{5}{b} \rightarrow y=x+\frac{5}{b} \quad(\because a=-b)$
14. A

Four times as fast as she walked \rightarrow Time will be $\frac{1}{4}$ of 14 minutes.
Therefore, $14+\frac{14}{4}+\frac{14}{4}=21$.
15. C Simplify the inequalities. $x-2 y=8$ and $x+2 y=20 \rightarrow x=14$ and $y=3 \rightarrow x+y=17$
16. A

Putting $(0,0)$ in the function to determine $a . \quad \rightarrow 0=a(-4)^{2}+8 \rightarrow a=-\frac{1}{2}$
The linear function is $y=x$. Solve the equation. $-\frac{1}{2}(x-4)^{2}+8=x \rightarrow(x-4)^{2}-16+2 x=0 \rightarrow$ $x^{2}-8 x+16-16+2 x=0 \rightarrow x^{2}-6 x=0 \rightarrow x(x-6)=0 \rightarrow x=r=6$
17. C
$\left\{\begin{array}{l}4 x-5 y-10>0 \rightarrow 5 y<4 x-10 \rightarrow y<\frac{4}{5} x-2 \text { (dotted line) } \\ y \geq x^{2}-6 x+5 \rightarrow y \geq(x-3)^{2}-4 \rightarrow \text { positive axis of symmetry }\end{array}\right.$
18. A
$\frac{x-1}{3}=k x+2 \rightarrow x-1=3 k x+6 \rightarrow x-3 k x=7 \rightarrow x(1-3 k)=7 \rightarrow k=\frac{1}{3}$
If $k=\frac{1}{3}$, then $x \times 0=7$. There is no such a number to satisfy the equation.
19. A

Area of the circle $=\pi\left(\frac{a}{2}\right)^{2}$ and area of the square $=\frac{a \times a}{2}=\frac{a^{2}}{2}$.
Therefore, the area of the shaded region $=\frac{\pi a^{2}}{4}-\frac{a^{2}}{2}=\frac{\pi a^{2}-2 a^{2}}{4}=\frac{a^{2}(\pi-2)}{4}$
20. C
$a x+b y-2=0 \rightarrow y=-\frac{a}{b} x+\frac{2}{b} \rightarrow-\frac{a}{b}<0$ and $\frac{2}{b}<0$ (ncgative slope and negative y-intercept)
Since $b<0$, a must be negative.
21. A
$R=\frac{f(b)-f(a)}{b-a}=\frac{-3-5}{5-2}=-\frac{8}{3}$
22. D

Slope of $\overline{M T}$ is $\frac{11-1}{7-1}=\frac{5}{3}$. Slope of line ℓ is $-\frac{3}{5}$. Midpoint of $\overline{M T}$ is $\left(\frac{7+1}{2}, \frac{11+1}{2}\right)=(4,6)$.
Therefore, the equation of $\overline{A H}$ is $y=-\frac{3}{5} x+b$. Putting $(4,6)$ in the equation $\rightarrow y=-\frac{3}{5} x+\frac{42}{5}$
23. D
$x^{2}+y^{2}-2 x-2 y=7 \rightarrow(x-1)^{2}+(y-1)^{2}=9 \rightarrow$ center $(1,1)$ and radius $=3$
$y=k \rightarrow$ In order to have two intersections: $-2<k<4$

25. A

Radius $=\sqrt{(11-3)^{2}+(15-0)^{2}}=17 \rightarrow$ Therefore, $3-17=-14 \rightarrow(-14,0)$
26. B

$$
\begin{aligned}
& (a+b) x^{2}+(a-2 b) x+k=(k-1) x^{2}+5 x+3 \\
& \left\{\begin{array}{ll}
a+b=k-1 \rightarrow a+b=3 & \rightarrow 2 a+2 b=6 \\
a-2 b=5 & \rightarrow a-2 b=5 \\
k=3
\end{array} \quad \text { From the system of equations: } 3 a=9 \rightarrow a=3\right.
\end{aligned}
$$

27. C

Since the radius of the circle is 10 , the area of the sector is $\frac{100 \pi}{4}=25 \pi . \quad O C=5$ and $O A=5 \sqrt{3}$
Therefore, the area of the shaded region $=25 \pi-(5)(5 \sqrt{3}) \approx 35.2$
28. B
$h=v_{0} t-\frac{1}{2} g t^{2}+40 \rightarrow h=-\frac{1}{2}(9.8) t^{2}+196 t+40 \rightarrow h=-4.9 t^{2}+196 t+40$
Axis of symmetry $t=\frac{-196}{2(-4.9)}=20$
29. C
$h(20)=-4.9(20)^{2}+196(20)+40=2,000$
30. B
$P S=k-1$ and the beight is $k . \rightarrow$ Area $=\frac{(k-1) k}{2}=10 \rightarrow k^{2}-k-20=0 \rightarrow(k-5)(k+4)=0$
Therefore, $k=5$.
31. 24

The x-coordinate of point B is 6 and y-coordinate is $y=6(8-6)=12$.

Therefore, the area is $\frac{4 \times 12}{2}=24$.
32. 5

$$
z=3-4 i \rightarrow|z|=\sqrt{3^{2}+4^{2}}=5
$$

Answer Explanations

33. 3

$$
\left\{\begin{array}{l}
\text { If } x=1 \rightarrow 4+5 y<15, y=1,2 \rightarrow(1,1),(1,2) \\
\text { If } x=2 \rightarrow 8+5 y<15, y=1 \rightarrow(2,1)
\end{array}\right.
$$

34. 12

Ratio of the lengths $=1: 2: 3 \rightarrow$ ratio of the arcas $=1: 4: 9 \rightarrow k, 4 k, 9 k$
$9 k-4 k=5 k=20 \rightarrow k=5 \rightarrow$ Therefore, the area of the shaded region is $4 k-k=3 k=12$.
35. 6

$$
\begin{aligned}
& C D=2 a^{2} \text { and } A D=2 a \rightarrow \text { Arca of the rectangle }=(2 a)\left(2 a^{2}\right)=108 \\
& a=3 \rightarrow B C=2 a=6
\end{aligned}
$$

36. $7 / 2$ or 3.5
$\frac{5}{-8}=\frac{-2}{b}=\frac{1-a}{4} \rightarrow-8+8 a=20 \rightarrow a=\frac{7}{2}$
37. $\quad 12.6$
$A B=6-r+8-r=10 \rightarrow r=2$
Circumference $=2 \pi r=4 \pi=12.6$.

The length of a tangent from a exterior point is constant.
38. 2

$$
f(2)=0 \rightarrow f(2)=3(8)-8(4)+5(2)-k=0 \rightarrow k=2
$$

Answer Explanations

1. B

$$
10 x-5=a \rightarrow 5(2 x-1)=a \rightarrow 2 x-1=\frac{a}{5}
$$

2. C

$$
20+19 \times 5=115
$$

3. D

$$
\begin{aligned}
& \mathrm{D} \\
& |a-1|<3 \rightarrow-3<a-1<3 \rightarrow-2<a<4 \rightarrow 5 \text { integers: }-1,0,1,2,3,
\end{aligned}
$$

4. B

Only B has a negative slope and positive y-intercept.
5. D

$$
f(-2)=2,|f(1)|=|-2|=2, f(4.7)=2
$$

6. D

$$
\left(\sqrt[3]{x^{15}}\right)\left(\sqrt[2]{x^{8}}\right)=x^{15 / 3} x^{8 / 2}=x^{5} x^{4}=x^{9}
$$

Answer Explanations

7. A
8. C

$$
\frac{20}{100}=20 \%
$$

9. C

	Juniors	Seniors	Total
Physics	80	100	180
Statistics	20	100	120
Total	100	200	300

The data arc not spread farther from the mean than any other data.
10. B
$\sqrt{x+10}=x-2 \rightarrow x+10=x^{2}-4 x+4 \rightarrow x^{2}-5 x-6=0 \rightarrow(x-6)(x+1)=0 \rightarrow x=6$ or -1
When $x=-1$, it's undefined. Therefore, $x=\{6\}$.
11. C
$x^{2}-4 x+5=(x-1)(x-2)+a x+b \rightarrow x^{2}-4 x+5=x^{2}+(a-3) x+2+b \rightarrow a-3=-4$ and $5=2+b$
Therefore, $a=-1$ and $b=3$.
12. D
$x^{4}-\frac{1}{81}=\left(x^{2}+\frac{1}{9}\right)\left(x^{2}-\frac{1}{9}\right)=\left(x^{2}+\frac{1}{9}\right)\left(x+\frac{1}{3}\right)\left(x-\frac{1}{3}\right)$
13. A
$4\left(x^{2}-5 x\right)=16 \rightarrow x^{2}-5 x-4=0 \rightarrow$ Sum of the solutions is $\frac{-b}{a}=\frac{-(-5)}{1}=5$
14. C
$\frac{140}{8} \approx 17.5 \rightarrow 17.4$ is closest to the number.
15. C
$y=17.5 x \rightarrow y=17.5 \times 20=350$

17. 5
$f(2)=g(2)-k=-3 \rightarrow g(2)=k-3$
$g(2)=\sqrt{3(2)-2}=2 \rightarrow$ Therefore, $k-3=2 \rightarrow k=5$.

Answer Explanations

18. 8

Volume $=\pi\left((r+4)^{2}-r^{2}\right) \times 10=800 \pi \rightarrow(r+4)^{2}-r^{2}=80 \rightarrow 8 r+16=80 \rightarrow r=8$
19. 3 or 4

$$
\begin{aligned}
& f(x)=g^{2}(x)-7 g(x)+15 \rightarrow f(2)=g^{2}(2)-7 g(2)+15=3 \rightarrow g^{2}(2)-7 g(2)+12=0 \\
& (g(2)-3)(g(2)-4)=0 \rightarrow g(2)=3 \text { or } 4
\end{aligned}
$$

20. 128

SECTION 4

1. A

$$
(x+3) y=x^{2}-x+12 \rightarrow 6 y=9-3+12 \rightarrow y=3
$$

2. C

Original price per book $=\frac{k}{10} \rightarrow$ New price is $\frac{k}{10}-1 \rightarrow$ Price for 2 books $=2\left(\frac{k}{10}-1\right)=\frac{k}{5}-2$
3. C

$$
C(t)=250 P^{\prime}=250(1+0.028)^{\prime} \rightarrow P=1.028
$$

4. B

$$
C=250(1.028)^{4} \approx 279
$$

5. C

When $x=0, y=-4$ and when $y=0, x=4$. \rightarrow positive x-intercept and negetive y-intercept
Or, $y=x-4$.
6. D
$a x+5=0.8 x+b \rightarrow(a-0.8) x=b-5$
Choice C) $a=0.8, b=5 \rightarrow 0(x)=0 \rightarrow$ infinitely many solution
Choice D) $a=0.8, b=0.8 \rightarrow 0(x)=-4.2 \rightarrow$ no solution

Answer Explanations

7. C

Since slope is $\sqrt{3}, \angle P O R=60^{\circ}=\frac{\pi}{3}$.
8. C
$\frac{1-i^{2}}{i}=\frac{2 \times i}{i \times i}=\frac{2 i}{-1}=-2 i$
9. B

$$
P(1)=1-3+5=3
$$

10. D

$$
(\sqrt[k]{16})(\sqrt[k]{8})=2 \rightarrow 16^{\frac{1}{k}} \times 8^{\frac{1}{k}}=(128)^{\frac{1}{k}}=2^{\frac{7}{k}}=2^{1} \rightarrow \frac{7}{k}=1 \rightarrow k=7
$$

11. B

$$
\begin{aligned}
& c x-y=1 \rightarrow y=a x-1 \\
& x+2 y=3 \rightarrow y=-\frac{1}{2} x+\frac{3}{2}
\end{aligned} \rightarrow a \text { is a ncgativ reciprocal of the other slope. } \rightarrow a=2
$$

12. D

$$
a+5 x=b \rightarrow 5 x=b-a \rightarrow x=\frac{b-a}{5}
$$

13. C

		Holiday					
		Thanksgiving	Mcmorial Day	Labor Day	Total		
Gender	Males	40	50	35	125		
	Females	63	90	74	227		
	Total	103	140	109	352		

14. D
$352 \times 0.21=73.92 \rightarrow$ females choosing Labor Day
15. D
16. A
$f(-2)=4-2 k+k+1=0 \rightarrow k=5$
Or
$x^{2}+k x+k+1=(x+p)(x+2) \rightarrow x^{2}+k x+k+1=x^{2}+(2+p) x+2 p \rightarrow k=2+p$ and $k+1=2 p$
$k+1=2 k-4 \rightarrow k=5$
17. D
$\frac{1}{3} f(\sqrt{k})=3 \rightarrow f(\sqrt{k})=9 \rightarrow 2 k-3=9 \rightarrow k=6$
18. D

19. C

20. C

Putting $(0,1)$ in the inequalities.
$1>a$ and $1<b \rightarrow b>a$
21. D

Use quadratic formula.
22. D

The triangles are similar.
23. D
$f(0)=b=-6 \rightarrow b=-6 \rightarrow f(2)=16+12+2 a-6=0 \rightarrow 2 a=-22 \rightarrow a=-11 \geq$
24. C

Translate doesn't affect the slope.
25. D

If $h>6$ or $h<5$, Not accepted. $\rightarrow|h-5.5|>0.5$
26. A
$a^{-2}+3 a^{-1}-10=0 \rightarrow \frac{1}{a^{2}}+\frac{3}{a}-10=0 \rightarrow 10 a^{2}-3 a-1=0 \rightarrow(5 a+1)(2 a-1)=0 \rightarrow a=-\frac{1}{5}$ or $\frac{1}{2}$
Therefore, $a=\frac{1}{2} . \quad(a>0)$

Answer Explanations

27. C

The length of an edge is 4 . The length of a diagonal $=\sqrt{4^{2}+4^{2}+4^{2}}=\sqrt{48}=4 \sqrt{3}$
28. D

$$
F^{\prime}=k \frac{(3 v)^{2}}{\left(\frac{1}{2} r r^{\prime}\right)}=k \frac{v^{2}(9)}{r^{2}(1 / 2)}=k \frac{v^{2}}{r}(18)=18 F
$$

Or, use convenient number. $(k=1, v=1$, and $r=1) \rightarrow F=1 \rightarrow F^{\prime}=\frac{3^{2}}{\frac{1}{2}}=18$
29. B

Similar: $\frac{10-x}{10}=\frac{x}{10} \rightarrow 10 x=100-10 x$

$$
\rightarrow 20 x=100 \rightarrow x=5
$$

Therefore, the arca of the square is 25 .
30. C
$|k-3|=10 \rightarrow k=13,-7$
$|m+3|=6 \rightarrow m=3,-9$$\quad$ Therefore, the greatest value of $k-m$ is $13-(-9)=22$.
31. $5 / 6$

32. I

$$
\begin{aligned}
& a^{(x+1)^{2}}=\left(\frac{1}{a}\right)^{-4 x} \rightarrow a^{x^{2}+2 \cdot x+1}=\left(a^{-1}\right)^{-4 x} \rightarrow a^{x^{2}+2 x+1}=a^{4 x} \rightarrow x^{2}+2 x+1=4 x \\
& x^{2}-2 x+1=0 \rightarrow(x-1)^{2}=0 \rightarrow x=1
\end{aligned}
$$

33. 2

$$
\frac{K E_{1}}{K E_{2}}=\frac{\frac{1}{2}(k)(16)^{2}}{\frac{1}{2}(2 \not 2)(8)^{2}}=\frac{16 \times 16}{2 \times 8 \times 8}=2
$$

Answer Explanations

34. 243

When $t=9$, it is the maximum beight. $h=3 \times 9(18-9)=243$
35. 2.4

Area of the triangle:
$\frac{3 \times 4}{2}=\frac{5 \times O P}{2} \rightarrow O P=\frac{3 \times 4}{5}=2.4$

36. 5

$$
\frac{15}{a}=\frac{9}{b}=\frac{b}{1} \rightarrow b^{2}=9 \rightarrow b=3 \rightarrow \frac{15}{a}=3 \rightarrow a=5
$$

37. 7.5
$x^{2}=x+2 \rightarrow x^{2}-x-2=0 \rightarrow(x-2)(x+1)=0$
$x=-1,2$
The arca of trapezoid is $\frac{(1+4) 3}{2}=7.5$
38. $\frac{4}{3}$

$g(5)=2 f(5)+k=18 \rightarrow f(5)=\frac{18-k}{2} \quad \rightarrow f(5)-f(2)=\frac{18-10}{2}=4$
$g(2)=2 f(2)+k=10 \rightarrow f(2)=\frac{10-k}{2}$
Slope of the function $f=\frac{f(5)-f(2)}{5-2}=\frac{4}{3}$

Answer Explanations

Test 7 Answers and Explanations

SECTION 3

1. D

$$
\text { Midpoint }=\frac{2+10}{2}=6 \text { and distance }=10-6=4 \rightarrow|x-6| \leq 4
$$

2. B
3. A

$$
f(9)=-\frac{5}{3}(9)+b=5 \rightarrow b=20 \rightarrow f(3)=-\frac{5}{3}(3)+20=15
$$

4. A

$$
x^{-2}\left(\frac{1}{\sqrt{x}}\right)=\frac{1}{x^{2}}\left(\frac{1}{x^{\frac{1}{2}}}\right)=\frac{1}{x^{\frac{5}{2}}}=\frac{1}{\sqrt{x^{5}}}
$$

5. D

$$
\begin{aligned}
& \tan \angle E F C=\frac{E C}{F C} \text { and } \sin \angle B A E=\frac{6}{10} \text { (Use these numbers) } \\
& \tan \angle E F C=\frac{6}{4}=\frac{3}{2}
\end{aligned}
$$

Answer Explanations

6. C

$$
\text { Putting } \frac{x}{2} \text { in the equation } \rightarrow f(x)=3\left(\frac{x}{2}\right)+1=\frac{3}{2} x+1
$$

7. D
8. B
9. C

$$
200=300-20 t \rightarrow 20 t=100 \rightarrow t=5
$$

10. D

$$
\frac{1}{3} x-\frac{1}{6} y=10 \rightarrow 2 x-y=60 \text { is parallel to } 10 x-5 y=11 \text {, because } \frac{2}{10}=\frac{-1}{-5} \neq \frac{60}{11} .
$$

11. C

$$
\sqrt{\frac{x-2}{x}}=2 \rightarrow \frac{x-2}{x}=4 \rightarrow 4 x=x-2 \rightarrow x=-\frac{2}{3}
$$

12. D

Minimum of $y=(x+5)(x-5)$ is $f(0)=-25$. Therefore, if $k=-50$, no solution.
13. \wedge
$f(x)=2 x^{2}-4 x+27 \rightarrow f(x)=2\left(x^{2}-2 x+1\right)+25 \rightarrow f(x)=2(x-1)^{2}+25$
Therefore, $a=1$ and $b=25$.
14. C

$$
\frac{1-\frac{2}{3 a}}{a-\frac{4}{9 a}}=\frac{\left(1-\frac{2}{3 a}\right) 9 a}{\left(a-\frac{4}{9 a}\right) 9 a}=\frac{9 a-6}{9 a^{2}-4}=\frac{3(3 a-2)}{(3 a+2)(3 a-2)}=\frac{3}{3 a+2}
$$

15. B
$\frac{81^{3 x}}{27^{y}}=\frac{3^{12 x}}{3^{3, y}}=3^{12 x-3 y}=3^{2}=9$, because $3(4 x-y)=3\left(\frac{2}{3}\right)=2$.
16. 12
$5 \times 24=10 \times f(10) \rightarrow f(10)=\frac{120}{10}=12$
17. 27
$\frac{A E}{E C}=\frac{2}{3} \rightarrow \frac{\text { area of } \triangle A E D}{\text { area of } \triangle C E D}=\frac{18}{x}=\frac{2}{3} \rightarrow x=27$

Answer Explanations

18. 54

$$
8 k=12 \rightarrow k=1.5
$$

Therefore, the area is $\frac{9 \times 12}{2}=54$.
19. 4

Since $O A=A B=k$, the area of $\triangle O A B=\frac{k \times k}{2}=\frac{1}{8} \quad 8 k=12$

$k^{2}=\frac{1}{4} \rightarrow k=\frac{1}{2} \rightarrow$ The coordinates of point A is $\left(\frac{1}{2}, \frac{1}{2}\right)$.
Putting the ordered pair in $y=a x^{3} \rightarrow \frac{1}{2}=a\left(\frac{1}{2}\right)^{3} \rightarrow \frac{1}{2}=a\left(\frac{1}{8}\right) \rightarrow a=4$
20. 2
$\frac{14}{x^{2}-3 x-10}=\frac{a}{x-5}+\frac{b}{x+2} \rightarrow 14=a(x+2)+b(x-5) \rightarrow$ If $x=5$, then $14=7 a \rightarrow a=2$.

SECTION 4

1. B
2. A

$$
6\left(\frac{x^{2}}{y}\right)\left(\frac{3}{2 x}\right)=9\left(\frac{x^{2}}{x y}\right)=9\left(\frac{x}{y}\right)=9(2)=18
$$

3. B

$$
2 x-25+4 x+10=180 \rightarrow 6 x=195 \rightarrow x=32.5
$$

4. A

System of equations: $x=8$ and $y=4 \rightarrow \frac{x^{2}-y^{2}}{2 x}=\frac{64-16}{16}=3$
5. B

Hourly rate is $\$ 110 . \rightarrow 2 \times 110=\$ 220$
6. B

Between 2 and 4, the graph has the greatest slope.
7. D

Absolute value CANNOT be negative.

Answer Explanations:

8. A

$$
f(-2)=4-2 k-5=3 \rightarrow k=-2 \rightarrow f(x)=x^{2}-2 x-5 \rightarrow f(2)=4-4-5=-5
$$

9. C
$40 \times 100=\$ 4,000$
10. A

A
$20,000=40 n+800 \rightarrow 40 n=19200 \rightarrow n=480 \rightarrow 30 t=480 \rightarrow t=16$
11. D
$a+b i=\frac{2-i}{3+i}=\frac{(2-i)(3-i)}{(3+i)(3-i)}=\frac{5-5 i}{10}=\frac{1}{2}-\frac{1}{2} i \rightarrow$ Therefore, $a=\frac{1}{2}$.
12. B

Slope of line $\ell=\frac{9-0}{0-a}=-3$ (negative reciprocal) $\rightarrow a=3$
13. D

All data lie exactly on the straight line that has a positive slope.
14. D

If $\cos \angle R=\sin \angle T, \angle R+\angle T=90^{\circ} . \rightarrow \angle S=90^{\circ}:$ Right triangle
15. C

1) y-intercept: $f(0)=c>0 \rightarrow 2$ 2) Concave down(graph opens downward): $a<0$
2) Axis of symmetry: $x=\frac{-b}{2 a}>0 \rightarrow b>0$, because $a<0$.
16. C

$$
\begin{aligned}
& \frac{1}{12} x-\frac{1}{24} y=\frac{1}{8} \rightarrow 2 x-y=3 \rightarrow 6 x-3 y=9 \\
& 6 x-3 y=9
\end{aligned}
$$

Solve the system equations using addition: $\frac{5 x+3 y=2}{11 x=11} \rightarrow x=a=1$
17. C
$\frac{1+200}{2}=100.5 \rightarrow$ When you arrange the data from least to greatest, the median in betweeen 100 and 101 .
18. D

Probability (own 2 pets $)=\frac{10+15}{200}=\frac{1}{8} \rightarrow$ Therefore, expected number $=(15,000+10,000) \times \frac{1}{8}=3125$
19. D

Answer Explanations

$x^{2}+y^{2}-6 x-8 y=0 \rightarrow\left(x^{2}-6 x+9\right)+\left(x^{2}-8 y+16\right)=9+16 \rightarrow\left(x^{2}-6 x+9\right)+\left(x^{2}-8 y+16\right)=25$
Area of the circle is $25 \pi \approx 78.5$
20. A
$A B: B C: C D=3: 5: 2 \rightarrow$ Ratio of the areas $=3: 5: 2=3 k, 5 k, 2 k$
Since $3 k+2 k=13 \rightarrow 5 k=13 \rightarrow$, area of $\triangle \mathrm{EBC}$ is $5 k=13$.
21. D

Midpoint $=\frac{-6+14}{2}=4$ and distance $=14-4=10$. Thercfore, $|K-4| \geq 10$.
22. C

The ratio of the volumes $=\frac{\pi(2 r)^{2} h}{3}: \frac{\pi r^{2} h}{3}=4: 1 \rightarrow$ Thercfore, $\frac{1}{4} \times 125=31.25$
23. A

The arca of semicircle III is $8+24=32 . \rightarrow \pi\left(\frac{S T}{2}\right)^{2} \times \frac{1}{2}=32 \rightarrow\left(\frac{S T}{2}\right)^{2}=\frac{64}{\pi} \rightarrow S T^{2}=\frac{256}{\pi}$ $S T=\sqrt{\frac{256}{\pi}}=\frac{16}{\sqrt{\pi}}$

24.

Average rate of change between -2 and $4=\frac{f(4)-f(-2)}{4-(-2)}=\frac{f(4)-f(-2)}{6}$

$$
f(4)=2 g(4)-5=2(-2)-5=-9 \text { and } f(-2)=2 g(-2)-5=2(-1)-5=-7
$$

Thercfore, average rate of change is $\frac{-9-(-7)}{6}=-\frac{1}{3}$.
25. B

$$
k^{-5}=2\left(4 k^{-2}\right) \rightarrow \frac{1}{k^{5}}=\frac{8}{k^{2}} \rightarrow 8 k^{5}=k^{2} \rightarrow k^{3}=\frac{1}{8} \rightarrow k=\frac{1}{2}(k \neq 0)
$$

26. C

The height of the cylinder is 16 .
The volume is $\pi\left(6^{2}\right)(16)=576 \pi$
27. B

$$
\frac{S d}{100 k \text { paper cups }}=\frac{100 d \text { cents }}{100 k \text { cups }}=\frac{d}{k} \text { cents } / \mathrm{cup}
$$

Answer Explanations

28. B

Same slope: $\frac{3-0}{0-b}=\frac{1-0}{0-a} \rightarrow-\frac{3}{b}=-\frac{1}{a} \rightarrow b=3 a \quad:$ Putting $b=3 a$ in the equation

$$
a+b=8 \rightarrow a+(3 a)=4 a=8 \rightarrow a=2
$$

29. A
$k-2 a=0$ and $k-11=5 \rightarrow k=16 \rightarrow 16-2 a=0 \rightarrow a=8$
30. B
$y=a x(x-6)$ has two possible graphs.
Case 1) $-3=a(3)(3-6) \rightarrow-3=-9 a \rightarrow a=\frac{1}{3}$
Case 2) $3=a(3)(3-6) \rightarrow 3=-9 a \rightarrow a=-\frac{1}{3}$
31. 8

Case 1)

Intersection of the two graphs: $\frac{2}{3} x=2 x-8 \rightarrow 2 x=6 x-24 \rightarrow 24=4 x \rightarrow x=6$ and $y=4$
x-intercept of $y=2 x-8 \rightarrow 0=2 x-8 \rightarrow x=4$
Area $=\frac{4 \times 4}{2}=8$
32. $\frac{5}{4}$ or 1.25
$Q(0,2)$ and $\dot{R}(6, k) \rightarrow$ The slope of $\overline{Q R}$ is $\frac{k-2}{6-0}=\frac{1}{2} . \rightarrow k=5$.
Therefore, the slope of $\overline{P R}$ is $\frac{5-0}{6-2}=\frac{5}{4}$ or 1.25 .
33. 50°

Radius of the circle is $10 . \frac{\pi}{6}=\frac{180^{\circ}}{6}=30^{\circ}$.
Area of the parallelogram is $10 \times 5=50$.

34. 1050
$15 x+300=-3 x+1200$
$18 x=900$
$x=r=50$
$j=s=15(50)+300=1050$

35. 40
$A B=6-(-4)=10$ and the height is $11-3=8$.
Area $=\frac{10 \times 8}{2}=40$
36. 35
$S R=2-(-5)=7$ and $O T=f(0)=10$
Therefore, the area of $\triangle S T R=\frac{7 \times 10}{2}=35$.
37. 0.82
$V(t)=20,000(1-0.18)^{n} \rightarrow C=0.82$
38. 7415
$c=20,000 \times(0.82)^{5} \approx \$ 7415$

3773

Answer Explanations

6. A

$$
1.25 a^{2}=0.05 b^{2} \rightarrow \frac{a^{2}}{b^{2}}=\frac{0.05}{1.25}=\frac{1}{25} \rightarrow \frac{a}{b}=\frac{1}{5}
$$

7. D
K must be 200.
8. B

$$
36=15+0.15(T-200) \rightarrow T-200=\frac{36-15}{0.15}=140 \rightarrow T=200+140=340 \text { minutes }
$$

9. B

$$
f(-1)=1+3+a+a=0 \rightarrow 2 a=-4 \rightarrow a=-2
$$

10. C
$B C=20, A B=20 \times \sin C=20 \times 0.6=12$ and $A C=16$.
Therefore, $\frac{16 \times 12}{2}=\frac{20 \times A D}{2} \rightarrow A D=\frac{16 \times 12}{20}=9.6$

16
11. A

$$
a(x+b)=3 x-15 \rightarrow a x+a b=3 x-15 \rightarrow a=3 \text { and } a b=-15 \rightarrow b=-5
$$

12. B

Center is at $(3,0)$. Radius $=5$ and $O R=4$.
Therefore, $b=4$.

13. D
$\frac{3+i}{3-i}=\frac{(3+i)(3+i)}{(3-i)(3+i)}=\frac{8+6 i}{10}=\frac{4}{5}+\frac{3}{5} i=a+b i \rightarrow a=\frac{4}{5}$
14. B
$P=\frac{50}{200}=0.25$
15. B
$P=\frac{30}{110}=\frac{3}{11}$

Answer Explanations

16. 15 (splitting theorem)
$\frac{8}{10}=\frac{12}{x} \rightarrow x=\frac{12 \times 10}{8}=15$
17. 108
$\frac{d}{60}+\frac{d}{40}=4.5 \rightarrow 2 d+3 d=540 \rightarrow 5 d=540 \rightarrow d=108$ miles
18. 3
$x^{3}-3 x^{2}+5 x=15 \rightarrow x^{2}(x-3)+5(x-3)=0 \rightarrow(x-3)\left(x^{2}+5\right)=0 \rightarrow x=3:\left(x^{2}+5 \neq 0\right)$
19. 7
$x^{2}+(k+1) x+16=(x+h)^{2} \rightarrow x^{2}+(k+1) x+16=x^{2}+2 h x+h^{2} \rightarrow h^{2}=16$ and $k+1=2 h$
$\rightarrow h=4$ and $k=2 h-1=7$
20. 64
$b^{2}-a^{2}=28 \rightarrow(b+a)(b-a)=28 \rightarrow b+a=14$ and $b-a=2 \rightarrow 2 b=16 \rightarrow b=8$
Therefore, the area of the square is 64 .
CF) If you chose $b+a=28$ and $b-a=1$, or $b+a=7$ and $b-a=4$, it's not working, bccause
b and a are not integers.
3
21. C

$$
4 a+4 b=48 \rightarrow 2(2 a+2 b)=48 \rightarrow 2 a+2 b=24
$$

2. A

A
$x=180-60=120$ and $y=180-110=70 \rightarrow x-y=120-70=50$
3. B
$\frac{2}{3}=\frac{b}{4} \rightarrow b=\frac{8}{3}$
Or, you can find the equation of line ℓ. $\quad y=\frac{4}{3} x+\frac{8}{3}$
4. D

5. A

$$
(\sqrt[4]{10})(\sqrt[3]{10})=100^{k} \rightarrow 10^{\frac{1}{4}} \times 10^{\frac{1}{3}}=10^{\frac{7}{12}}=10^{2 k} \rightarrow 2 k=\frac{7}{12} \rightarrow k=\frac{7}{24}
$$

Answer Explanations

6. C

$$
\frac{9}{5} C+32=2 C+30 \rightarrow 2=\frac{1}{5} C \rightarrow C=10
$$

7. C

In the vertex form: $y=a(x-5)^{2}+10$, where $a<0$. Therefore, $\frac{1+x}{2}=5 \rightarrow x=9 \rightarrow(9,0)$ is the other x-intercept.
8. D

Putting $a=1+2 b$ in $a^{2}=4 b^{2} . \rightarrow(1+2 b)^{2}=4 b^{2} \rightarrow 1+4 b+4 b^{2}=4 b^{2} \rightarrow 4 b=-1 \rightarrow b=-\frac{1}{4}$
Therefore, $a=1+2\left(-\frac{1}{4}\right)=\frac{1}{2}$
9. C
$f(1.5)=k \rightarrow k=2 \rightarrow g(2)=-2$
10. D
$|2 x-6|<10 \rightarrow-10<2 x-6<10 \rightarrow-4<2 x<16 \rightarrow-2<x<8$
$\{\cdots 1<x<7\} \subset\{-2<x<8\}$
11. B

Let $x=$ number of black marbles removed from the container.
$P=\frac{20-x}{(20-x)+16}=\frac{1}{3} \rightarrow 60-3 x=36-x \rightarrow 24=2 x \rightarrow x=12$
12. B

Perimeter $=2 \pi r+4 r=8 \pi+16 \rightarrow(2 \pi+4) r=(2 \pi+4) 4 \rightarrow r=4$
13. A
$x^{12}=5000$ and $\frac{x^{11}}{y}=10 \rightarrow \frac{x^{11} \times x}{y \times x}=\frac{x^{12}}{x y}=10 \rightarrow \frac{5000}{x y}=10 \rightarrow x y=\frac{5000}{10}=500$
14. C
$\frac{1+30}{2}=15.5 \rightarrow$ median scorc must between 15 th and 16 th students. $\rightarrow 70$
30303030304040404040707070707070707070 ...
15. D
$C=100+k t \rightarrow 480=100+k(8) \rightarrow 8 k=380 \rightarrow k=47.5$
Therefore, the modeled equation is $C=100+47.55$.

Answer Explanations

16. C

$$
C=100+47.5 \times 10=\$ 575
$$

17. D
$f(0)=4 \rightarrow$ The line passes through points $(0,4)$ and $(5,9)$.
Slope: $\frac{9-4}{5-0}=1 \rightarrow$ Therefore, the equation is $y=x+4$.
18. A
$\left(\frac{1}{x}-\frac{1}{y}\right)^{2}=\left(\frac{y-x}{x y}\right)^{2}=\frac{x^{2}+y^{2}-2 x y}{(x y)^{2}}=\frac{85-10}{25}=3$
19. B
$\frac{1}{x(x+1)}=\frac{a}{x}-\frac{b}{x+1} \rightarrow \frac{1}{x(x+1)}=\frac{a(x+1)-b x}{x(x+1)} \rightarrow \frac{1}{x(x+1)}=\frac{(a-b) x+a}{x(x+1)} \rightarrow a=1$ and $b=1$
20. D

Reflected function must be $-2 x+y=-5 \rightarrow y=2 x-5$
$(4,0)$ is not on the resulting graph of $y=2 x-5$.
21. B
$b=\frac{2}{3} a \rightarrow a\left(\frac{2}{3} a\right)=54 \rightarrow a^{2}=81 \rightarrow a=9 \rightarrow$ Therefore, $b=\frac{2}{3}(9)=6$.
22. C

Price for the 50 pound bag $=x \rightarrow \frac{80+150+x}{10+25+50}=6 \rightarrow \frac{230+x}{85}=6 \rightarrow x=\$ 280$
23. D

Abraham: $\frac{70-50}{50} \times 100=40 \% \quad$ Benjamin: Decreased \quad Catherina: $\frac{100-70}{70} \times 100 \approx 42.9 \%$
Edward: $\frac{90-50}{50} \times 100=80 \%$
24. C

Ordered pairs (test 1 , test 2$) \rightarrow(50,70),(80,60),(70,100),(80,70),(50,90)$
25. B

Data of Burner City are more widely spread.
26. C

Since $\sin \angle R=0.8, O P: O P: P R=10: 8: 6$ or 5:4:3.
Therefore, $\frac{O P}{P R}=\frac{4}{3} \rightarrow \frac{O P}{12}=\frac{4}{3} \rightarrow O P=16$.

27. C

$$
\begin{array}{lr}
2^{(x+2 y)}=16=2^{4} \rightarrow x+2 y=4 \\
3^{(2 x+y)} & =81=3^{4} \rightarrow 2 x+y=4
\end{array} \quad \begin{array}{r}
x+2 y=4 \\
\end{array}
$$

28. D
$(x+y)^{2}-(x-y)^{2}=72 \rightarrow x^{2}+2 x y+y^{2}-x^{2}+2 x y-y^{2}=72 \rightarrow 4 x y=72 \rightarrow x y=18$
Because x and y are positive integers, $(x, y) \rightarrow(1,18),(2,9),(3,6),(6,3),(9,2),(18,1)$
Therefore, possible sum of the numbers are $19,11,9$.
29. D
$P>Q>R \rightarrow \frac{a+b}{2}>\frac{b+c}{2}>\frac{c+a}{2} \rightarrow\left\{\begin{array}{l}a+b>b+c \rightarrow a>c \\ b+c>c+a \rightarrow b>a\end{array} \rightarrow\right.$ Therefore, $b>a>c$.
30. C

Cost $=120+0.3 n$ and selling amount $=0.75 n \rightarrow$ Therefore, the profit $=0.75 n-(120+0.3 n)=0.45 n-120$
31. 25.1
$x^{2}-4 x+y^{2}+4 x=0 \rightarrow(x-4 x+4)+(y+4 y+4)=4+4 \rightarrow(x-2)^{2}+(y+2)^{2}=8$
The area of the circle $=\pi r^{2}=\pi(8) \approx 25.1$
32. 12.4
$C=\frac{198.4 x+1097}{16} \rightarrow C=\frac{198.4}{16} x+\frac{1097}{16} \rightarrow C=12.4 x+68.5625$
For every 1 unit increase
For every 1 unit increase, $\$ 12.4$ increases.
33. 24

Constant slope: slope $=\frac{f(10)-f(5)}{10-5}=\frac{10}{5}=2 \rightarrow \frac{f(20)-f(8)}{20-8}=2 \rightarrow f(20)-f(8)=12 \times 2=24$
34. $\frac{1}{10}$ or 0.1
$O D=10$ and $B C=20$
Putting $(10,20)$ in the equation $y=a x^{2}+10 \rightarrow 20=a(100)+10$
$100 a=10 \rightarrow a=\frac{1}{10}$.
35. 80
$\begin{aligned} & 3 x+3 y=180-30=150 \rightarrow x+y=50 \rightarrow 2 x+2 y=100 \\ & \text { Therefore, } k=180-100=80\end{aligned}$

36. 9

$$
\begin{aligned}
& 2(a+b)=24 \text { and }(b-a)^{2}=36 \rightarrow b-a=6 \\
& \left\{\begin{array}{l}
b+a=12 \\
b-a=6
\end{array} \rightarrow 2 b=18 \rightarrow b=9\right.
\end{aligned}
$$

37. 20

$f(x)=x^{2}-6 x+12=(x-3)^{2}+3$
$g(x)=k \rightarrow$ The possible maximum value of k is 3 .

Answer Explanations

Test 9 Answers and Explanations

SECTION 3	1	2.	3	4.	5	6	1	8	9	10
	D	B	B	C	(4)	B	B.	B	B	C
	11.	12	13	14	15.	16	17.	18	19,	220
	A	(D)	D	A	C	6	75	35	(15)	2
SECTION 4	12	2	-3.	$\cdots 4$	5	6 6	7-7.7	-8.	- ${ }^{\text {a }}$ -	10 䜌
	(c)	C	B	B.	C	A	D	A	D	A
	11	12	13	14	15	316.	17	188.	(19, ${ }^{\text {a }}$	${ }^{20}$
	D	d	B	D	B	c	D	(8)	B	C
	21.	22	23	24	25	26.	27	28.	29	30
	B/	A	A	B	D	C	B	(D)	(B)	U
	31	32	33	34	35	-36.	37	38		
	3	(13)	16	(45)	80	62.5	8	(2)		

SECTION 3

1. D
$|-4-5|=9 \leq 8$ (False)
2. B

$$
k=\sqrt{17^{2}-8^{2}}=\sqrt{225}=15
$$

3. B

$$
S R=3 k \text { and height }=6 k-k=5 k \rightarrow \text { Area }=\frac{3 k \times 5 k}{2}=30 \rightarrow k^{2}=4 \rightarrow k=2(k=\text { positive }) .
$$

4. C

Since $\sin a=\cos b, b=30^{\circ}$ and $a=60^{\circ} . \quad B C=10$ and $A C=10 \sqrt{3} \rightarrow$ Area is $\frac{10 \times 10 \sqrt{3}}{2}=50 \sqrt{3}$.
5. A
$f(2)=2-p=5 \rightarrow p=-3 \rightarrow f(2 p)=f(-6)=-6-(-3)=-3$
6. B
$a+50=b+28 \rightarrow a-b=28-50=-28 \rightarrow|a-b|=28$

Answer Explanations

7. B
$122334455566778 \rightarrow 5$ is in the middle.
8. B

Avcrage reading level is $\frac{4+5+6+3+5+7}{6}=\frac{30}{6}=5$
9. B

10. C

$$
\begin{aligned}
& p=\frac{50 n-200}{n}+k \rightarrow n p-n k=50 n-200 \rightarrow 200=50 n+n k-n p \rightarrow 200=n(50+k-p) \\
& \rightarrow n=\frac{200}{50+k-p}
\end{aligned}
$$

11. A

$$
P(-1)=2 \rightarrow P(-1)=3(-1)^{3}+a(-1)-2=2 \rightarrow-3-a-2=2 \rightarrow a=-7
$$

12. D
$b y=-a x+5 \rightarrow y=-\frac{a}{b} x+\frac{5}{b} \rightarrow$ negative slope and positive y-intercept $\rightarrow b>0$ and $a>0$
13. D
$\frac{2 \pi}{5}=\frac{2(180)}{5}=72^{\circ}$, which is $\frac{1}{5}$ of $360^{\circ} . \rightarrow \frac{80 \pi}{4}=\frac{A}{5} \rightarrow A=100 \pi \rightarrow r=10: A=$ area of the circle
14. A
line $\ell: y=x+b \rightarrow$ putting $(1,3)$ in the equation. $\rightarrow 3=1+b \rightarrow b=2 \rightarrow y=x+2$
line $m: y=-x+b \rightarrow$ putting $(1,3)$ in the equation. $\rightarrow 3=-1+b \rightarrow b=4 \quad$,
Arca of the triangle $=\frac{2 \times 1}{2}=1$

15. C

Long division: $\quad x - 1 \longdiv { x + 1 R 4 } \rightarrow \frac { x ^ { 2 } + 3 } { x - 1 } = x + 1 + \frac { 4 } { x - 1 }$

Answer Explanations

16. 6

$$
\frac{1}{x-1}+\frac{1}{2 x-2}=\frac{1}{4} \rightarrow \frac{1}{(x-1)}+\frac{1}{2(x-1)}=\frac{3}{2(x-1)}=\frac{1}{4} \rightarrow 2(x-1)=12 \rightarrow(x-1)=6
$$

17. 75

The arca of $\triangle A B C=\frac{10 \times 20}{2}=100$
\rightarrow The ratio of corresponding sides of $\triangle B M N: \triangle B A C=1: 2 \rightarrow$ The ratio of their areas is 1:4.
Let their areas be k and $4 k . \rightarrow 4 k=100 \rightarrow k=25 \rightarrow$ Area of the shaded region $=3 k=75$
18. 35
$a-1=4, b-2=5$, and $a b=k \rightarrow a=5$ and $b=7 \rightarrow$ Therefore; $k=35$.
19. 15

At $x=5$, it has a minimum. $\quad P(5)=2 \sqrt{5-5}+3(5)=15$
20. 2

Substitution: $x^{2}+2 x-8=0 \rightarrow(x+4)(x-2)=0 \rightarrow x=-4$ or $2(x \geq 0)$
Therefore, $y=\sqrt{2 \times 2}=2$.

SECTION 4

1. C

For the first 3 minutes: $\$ 0.01 a$ and for additional time $(t-3)$ minutes: $\$ 0.01 r(t-3)$
2. C
3. B
$A B=$ diameter $=\sqrt{6^{2}+8^{2}}=10$
Therefore, radius is 5 .

4. B
$f(x+4)=(x+a+4)^{2}+5 \rightarrow$ The graph was shifted by 4 left.
5. C

Claire: $y=40+10 x$, and David: $y=80+8 x$
$40+10 x=80+8 x \rightarrow 2 x=40 \rightarrow x=a=20$ and $b=40+10(20)=240$
6. A
$200=40+10 x \rightarrow x=16$, David: $y=80+8(16)=\$ 208$

Answer Explanations

1. D

Only choice D has three zeros such as $x=-2,1$, and 3 .
3. A Let $x=$ number of pencils. $1.25 \times 15+0.3 x \leq 35 \rightarrow 0.3 x \leq 16.25 \rightarrow x \leq 54.16$ maximum number is 54 .
9. D

$$
\left\{\begin{array}{l}
x+y>3 \rightarrow y>-x+3 \\
a x+2 y<-2 \rightarrow y<-\frac{a}{2} x-1
\end{array} \quad \rightarrow-1=-\frac{a}{2} \rightarrow a=2\right. \text { : Slopes must be same. }
$$

10. A
$(x+2)(x-3)=0 \rightarrow x^{2}-x+6=0 \rightarrow$ Multiply by $4 \rightarrow 4 x^{2}-4 x-24=0$
Therefore, $a=4$ and $b=-24$.
11. D

For 6 to 8 seconds, the average slope is the greatest.
12. D

Remainder Theorem
13. B
$f(x)=2 x^{2}-16 x+18 \rightarrow f(x)=2\left(x^{2}-8 x+16\right)+18-32 \rightarrow f(x)=2(x-4)^{2} \cdots 14 \rightarrow c=-14$
14. D
$\frac{5-10 x}{2 x+1}=\frac{-5(2 x+1)+10}{2 x+1}=\frac{10}{2 x+1}-5$ Or, use long division.
15. B

Temperatures in city B are spread widely.
16. C

$$
\begin{aligned}
& f(x)=g(x) \rightarrow(x-4)^{2}-1=-\frac{1}{4}(x-4)^{2}+4 \rightarrow \frac{5}{4}(x-4)^{2}=5 \rightarrow(x-4)^{2}=4 \\
& x-4=2,-2 \rightarrow x=6 \text { or } 2
\end{aligned}
$$

17. D
$x^{2}+y^{2}-4 x+4 y=k \rightarrow\left(x^{2}-4 x+4\right)+\left(y^{2}+4 y+4\right)=k+4+4 \rightarrow(x-2)^{2}+(y+2)^{2}=k+8$
$r^{2}=k+8=6^{2} \rightarrow k=28$
18. C

Average rate of change $=\frac{10-2}{8-1}=\frac{8}{7}$
19. B

Slope between $(7,13)$ and $(2,5)$ is $\frac{13-5}{7-2}=1.6 \rightarrow y=1.6 x+b \rightarrow$ putting $(2,5)$ in the equation $5=1.6(2)+b \rightarrow b=1.8 \rightarrow$ Thercfore, $y=1.6 x+1.8$.
20. C
$f(a+b)=2^{a \mid b, 2}=2^{a} \times 2^{b} \times 2^{2}=4\left(2^{a} \times 2^{b}\right)$
21. B
$s=$ sum of the other three numbers $\rightarrow a+s=783 \rightarrow a=1.25 s \rightarrow 1.25 s+5=783$
$\rightarrow 2.25 s=783 \rightarrow s=348 \rightarrow$ Thereforc, $a=1.25 s=1.25 \times 348=435$
22. A
$n=$ the number of students \rightarrow the number of books $=5 n+15=7(n-5) \rightarrow 50=2 n \rightarrow n=25$ Therefore, the number of books $=5(25)+15=140$.
23. A
$y=-\frac{1}{3} x+5 \rightarrow O P=5$ and $O Q=15 \rightarrow$ The area of the triangle $=\frac{5 \times 15}{2}=37.5$
24. B

Since $\triangle B E A$ and $\triangle A E D$ have the same height, the ratio of their aresa is also 3:2.
$\frac{\text { area of } \triangle B E A}{\text { area of } \triangle A E D}=\frac{3}{2}=\frac{15}{x} \rightarrow x=10$ and $\frac{\text { arca of } \triangle B E C}{\text { area of } \triangle C E D}=\frac{3}{2}=\frac{12}{y} \rightarrow y=8$
Therefore, the area of $\triangle A E C$ is $10+8=18$.
25. D

Since a and k are negative, $y<0$ for all value s of x.

26. C
$\frac{a-2}{b}=\frac{b+2}{a}=\frac{8}{4} \rightarrow a-2=2 b$ and $b+2=2 a \rightarrow a=\frac{2}{3}$ and $b=-\frac{2}{3}$

Answer Explanations

27. B
$V_{1}=\pi r^{2} h$ and $V_{2}=\pi(1.1 r)^{2}\left(1-\frac{k}{100}\right) h \rightarrow V_{2}=1.089 V_{1} \rightarrow \pi(1.1 r)^{2}\left(1-\frac{k}{100}\right) h=1.089 \pi r^{2} h$
$1.21\left(1-\frac{k}{100}\right)=1.089 \rightarrow 1-\frac{k}{100}=\frac{1.089}{1.21}=0.9 \rightarrow k=10$
28. D
fory 4 yards that Kimberly walks.
Kimberly walks 1.5 yards per second, because Albert walks 8 yards for every 4 yards that Kimberly walks. For every second Albert walks 1.5 yard more than Kimberly. Therefore, $\frac{60}{1.5}=40$ seconds.
29. B

30. B

First determine the value of a by putting $(0,16)$ in the equation. $16=a(0-3)^{2}-2 \rightarrow 18=9 a \rightarrow a=2$ Now find x-intercepts. $0=2(x-3)^{2}-2 \rightarrow(x-3)^{2}=1 \rightarrow x-3=1,-1 \rightarrow x=4$ or $2 \rightarrow Q(4,0)$ The cquation of line $\ell \rightarrow$ slope $=\frac{16-0}{0-4}=-4 \rightarrow$ Therefore, $y=-4 x+16$
31. 3

Denominator: $x^{3}-3 x^{2}+x-3=0 \rightarrow x^{2}(x-3)+(x-3)=(x-3)\left(x^{2}+1\right)=0 \rightarrow x=3\left(x^{2}+1 \neq 0\right)$
32. 13
$\frac{k}{100}(30,000)+\frac{k+4}{.100}(65,000-30,000)=9,850 \rightarrow 300 k+(k+4) 350=9,850 \rightarrow 650 k=8,450$ $k=\frac{8450}{650}=13$
33. 16.

Since $b-3=a$ and $a-5=8, a=13$ and $b=16$.
34. 45

Since $\triangle A B E$ and $\triangle C D E$ are similar, the ratio of corresponding sides are $12: 6$ or $2: 1$.
$\frac{h_{1}}{h_{2}}=\frac{2}{1} \rightarrow h_{1}+h_{2}=15 \rightarrow h_{1}=10$ and $h_{2}=5$
Therefore, $p-q=\frac{12 \times 10}{2}-\frac{6 \times 5}{2}=60-15=45$

Answer Explanations

35. 80

Since $h(5)=0,-16\left(5^{2}\right)+a(5)=0 \rightarrow 400=5 a \rightarrow a=80$
36. 62.5

Since $O P: O Q=3: 5$, the ratio of their areas is 9:25. Let their areas $9 k$ and $25 k$. The area of the shaded region is $25 k-9 k=16 k=40 . \rightarrow k=2.5 \rightarrow$ Therefore, the area of the largcr circle is $25(2.5)=62.5$.
37. 8
$f(0)=c=10$ and $f(-1)=a(-1)^{2}+b(-1)+c=a-b+c=18 \rightarrow$ Therefore, $a-b=18-10=8$.
38. 7

Point $P:-x^{2}+12=3 \rightarrow x^{2}=9 \rightarrow x=-3$ or 3 (two possible points)
Point Q: $-x^{2}+12=-4 \rightarrow x^{2}=16 \rightarrow x=-4$ or 4 (two possible points)

In the $x y$-planc above, line ℓ has the greatest slope of $7 . \frac{3-(-4)}{-3-(-4)}=7$.

Answer Explanations

Test 10 Answers and Explanations

SECTION 3	1	2	\bigcirc	4	5	. 6	7	8	9	10
	C	C	B,	D	C/	C/	B	B	D	D
	11	-12	13	14	15	16	17	18	19.	20
	C	D	B	A	D/	4.5	75	30	50	15
SECTION 4	1.	2 2	${ }^{3} 3$	$4 \times$	-5	6	7	8	9	-10
	A	B	B	A	B	C	B	B	C	D
	$\frac{1}{11}$	$\frac{B}{2}$	\% 13	14	15\%	16	17	18	19	20
	$\frac{8}{\text { A }}$	C	A	D	C	A	D	D	B	D
	21	$\frac{C}{22}$	23 .	24	25	26	27	28	29	30
	A	C	C	B	B	D	A	B	C	D
	A1	- 32	33	34	- 35	: 36	37	38		
	$\frac{7}{3}$	259	4	81	20	13	51.4	22.5		

SECTION 3

1. C

$$
2 x-3=x \rightarrow x=3 \rightarrow 2 x-3=3
$$

2. C

Put the numbers in the inequalities and check. $(-2,4) \rightarrow 2(-2)+4=0 \leq 3 \rightarrow(-1)-4=-5<-3$ (OK)
3. B

$$
\frac{k}{100}(20,000 \times 10)=2000 k
$$

4. D

$$
\begin{aligned}
& \mathrm{D} \\
& \frac{100-k}{10}=\frac{100}{x} \rightarrow x=\frac{1000}{100-k} . \quad \text { Or }(100-k) \% \text { of } x=10 \rightarrow \frac{100-k}{100} x=10 \rightarrow x=\frac{1000}{100-k}
\end{aligned}
$$

5. C

Slope

6. C

$$
\begin{aligned}
& \text { C } \\
& 2 x^{2}+12 x-32=0 \rightarrow x^{2}+6 x=16 \rightarrow x^{2}+6 x+(9)=16+(9) \rightarrow(x+3)^{2}=25
\end{aligned}
$$

7. B

Answer Explanations

3. B

Since the date are not exuctly on the line and are correlated negatively. The best answer is $\mathbf{- 0 . 9 5}$.
ग. D
Substitution: $2 x-3(x-4)=6 \rightarrow x=6$ and $y=6-4=2 \rightarrow(6,2)$
10. D
11. C

First determine the value of a using $(0,5) . \rightarrow 5=a(0+1)(0-5) \rightarrow a=-1$
From the equation: Tivo zeros $x=-1$ and $5 \rightarrow h=\frac{-1+5}{2}=2$ and $k=-(2+1)(2-5)=9$
12. D
$3 k=x^{2}-1 \rightarrow x^{2}=3 k+1 \rightarrow 3 x^{2}=9 k+3$
13. B
$a+b+c=45$ and $a+b-c=5 \quad$ Addition: $2(a+b)=50 \rightarrow a+b=25$
14. A
$a(x+1)+b(x-1)=2(x-2)+1 \rightarrow(a+b) x+(a-b)=2 x-3 \rightarrow a+b=2$ and $a-b=-3$
When you add these two equations: $2 a=-1 \rightarrow a=-\frac{1}{2}$
15. D
$3(x-3)^{2}=20 \rightarrow(x-3)^{2}=\frac{20}{3} \rightarrow x-3= \pm \sqrt{\frac{20}{3}} \rightarrow x=3 \pm \sqrt{\frac{60}{9}}=3 \pm \frac{\sqrt{60}}{3}$
16. 4.5
$|x-5| \leq \frac{1}{2} \rightarrow-\frac{1}{2} \leq x-5 \leq \frac{1}{2} \rightarrow 4.5 \leq x \leq 5.5 \rightarrow \quad$ The least value is 4.5.
Or, just simply $5-\frac{1}{2}=4.5$, because midpoint is 5 .
17. 75

Since the diameter is increased by 100%, the radius also is increased by 100%. Therefore, $\pi r^{2} h=\pi(2 r)^{2} h^{\prime} \rightarrow h^{\prime}=\frac{r^{2}}{4 r^{2}} h=\frac{1}{4} h=0.25 h \rightarrow h^{\prime}=(1-0.75) h: 75 \%$ of the height will be decreased.
18. 30

Axis of symmetry: $x=\frac{-(-20)}{2(1 / 2)}=20 \rightarrow 20$ is the midpoint of 10 and $x, \frac{10+x}{2}=20 \rightarrow x=30$

Answer Explanations

19. 50

The area of the shaded region $=\frac{5 \sqrt{2} \times 5 \sqrt{2}}{2}+\frac{5 \times 5}{2}+\frac{5 \times 5}{2}=50$
20. 15

The area of the triangle $=\frac{6 \times(a-3)}{2}=36 \rightarrow a-3=12 \rightarrow a=15$

SECTION 4

1. A

A Total amount will be $\$ d+\left(\frac{300}{10}\right) \times \$ \frac{c}{100}=\$\left(d+\frac{3 c}{10}\right)$
2. B

Constant slope: Let the value of $f(6)=k$.
$(0,3),(3,-8),(6, k) \rightarrow$ slope $=\frac{-8-3}{3-0}=\frac{k-3}{6-0} \rightarrow 3 k-9=-66 \rightarrow 3 k=-57 \rightarrow k=-19$
3. B

When $x=3, y=8$.

Answer Explanations

4. A

When $x=3, f(3-5)=3^{2}-5 \rightarrow f(-2)=4$.
5. B
$\frac{1}{a}+\frac{1}{b}=\frac{a+b}{a b}=20 \rightarrow \frac{10}{a b}=20 \rightarrow a b=\frac{1}{2}$
6. C

The area of $\triangle A F D$ is exactly half of the area of the rectangle. Therefore, the area of the parallelogram is $12.5 \times 2=25$.
7. B

Class Beta has the data closet to the mean. Class Gamma has a greatest standard deviation.
You can check using a calculator.
8. B

Each class has the same average score of 80 .
9. C

$$
f(x)=x^{2}-8 x+12=(x-4)^{2}-4 \rightarrow \operatorname{vertex}(4,-4)
$$

Move to the right by $3 . \rightarrow$ the vertex of $g(x)$ is $(7,-4)$.
10. D
$A=p\left(1+\frac{r / 100}{n}\right)^{n t}$ for annual interest of $r \%$. When $n=12$ and $r=2$, Interest $=9000\left(1+\frac{2}{1200}\right)^{120}-9000$.
11. A
$9 \times k=6 \times 6 \rightarrow k=4$

12. C

Replace x with $x+3 . \rightarrow f((x+3)-3)=(x+3)^{2}+(x+3)+1$
13. A
$3 p+5 \leq 15 \rightarrow 3 p \leq 10 \rightarrow 6 p \leq 20 \rightarrow 6 p-5 \leq 20-5 \rightarrow 6 p-5 \leq 15$
Therefore, the greatest possible value is 15 .
14. D (Factor Theorem)

When you putting $x=-1$, only choice D results in $0 .(-1)^{3}+(-1)^{2}-(-1)-1=-1+1+1-1=0$
15. C

Average rate of change $=$ Slope $=\frac{4.8-1.5}{7-1}=0.55$ feet $/$ week

Answer Explanations

16. A

$$
200+0.05 s=325+0.025 s \rightarrow 0.025 s=125 \rightarrow s=\$ 5,000
$$

17. D
$f(x)=x^{2}-4 x+5 \rightarrow f(x)=(x-2)^{2}+1 \rightarrow f(x)=g(x-2)+1$ means: move to the right by 2 and up by 1.
18. D

The ratio of corresponding sides $=1: 2 \rightarrow$ the ratio of areas $=1: 4$. Let the areas of the circles be k and $4 k$,
then $k+4 k=5 k=80 \pi \rightarrow k=16 \pi\left(=\pi r_{1}^{2}\right)$ and $4 k=64 \pi\left(=\pi r_{2}^{2}\right) \quad \rightarrow$ Therefore, $r_{1}=4$ and $r_{2}=8$.
19. B
$A B=25 \sin \angle B C D=25 \times 0.6=15 \rightarrow A C=\sqrt{25^{2}-15^{2}}=\sqrt{400}=20 \rightarrow C D=20-A D=10$
Thercfore, the area of $\triangle B C D=\frac{10 \times 15}{2}=75$.
20. D
$p=a^{2}-4 a+8=(a-2)^{2}+4 \rightarrow$ The minimum of p is $4 . \rightarrow$ The minimum of $p+6$ is $4+6=10$.
21. A
$20 \leq x-y \leq 60 \rightarrow$ mid point $=\frac{20+60}{2}=40$, the distance from mid point to the end point is $60-40=20$.
Therefore, $\mid z$-midpoint $\mid \leq$ distance $\rightarrow|z-40| \leq 20$
22. C
$\frac{1}{3}(x+3)\left(x^{2}-4 x+3\right)=0 \rightarrow(x+3)(x-1)(x-3)=0 \rightarrow$ zeros $x=-3,1,3$
23. C
$f(x)=(x-4)^{2}-64=x^{2}-8 x+16-64=x^{2}-8 x-48 \rightarrow f(x)=(x+4)(x-12)$
24. B
$\pi r^{2}=100 \pi \rightarrow r=10 \rightarrow O P=O R=10 \rightarrow$ Slope $=-\frac{10}{10}=-1 \rightarrow$ Therefore, $y=-x+10$.
25. B
$y=3$ and $y=-3$ have exactly 3 points of intersection with $y=f(x)$.
26. D

$$
50-2 x^{2} \geq 0 \rightarrow x^{2}-25 \leq 0 \rightarrow(x+5)(x-5) \leq 0 \rightarrow-5 \leq x \leq 5
$$

Answer Explanations

27. A
$O P=10$
Area of an equilateral triangle is $\frac{s^{2} \sqrt{3}}{4}$.
Therefore, the area of the shades region is $\frac{10^{2} \sqrt{3}}{4} \times 2=50 \sqrt{3}$

28. B

Slope $=\frac{f(b)-f(a)}{b-a}=5 \rightarrow \frac{32-(-4)}{b-a}=5 \rightarrow \frac{36}{b-a}=5 \rightarrow b-a=7.2$
29. C

When $x>200, y=20+0.05(x-200)$
30. D
$y=20+0.05(550-200)=20+17.5=537.5$
31. $\frac{7}{3}$

The slop of $\overline{B C}=\frac{9-2}{10-13}=\frac{7}{-3}$. Therefore, the slope of $\overline{A D}$ is $\frac{7}{3}$.
32. 259
$\frac{a}{b}=\frac{48}{100}=\frac{12}{25} \rightarrow$ Let $a=12 k$ and $b=25 k \rightarrow 150<25 k<200 \rightarrow 6<k<8 \rightarrow k=7$
Therefore, $a:=12 \times 7=24$ and $a \rightarrow 25 \sim 7$
Therefore, $a=12 \times 7=84$ and $h=25 \times 7=175 \rightarrow a+b=259$
33. 4
$\frac{\pi\left(5^{2}\right)(12)}{3}=\pi\left(5^{2}\right) h \rightarrow h=4$
34. 81

If $x=0, y=9 . \rightarrow P(0,9) \quad$ For x-intercept, $0=2 x^{2}-19 x+9=(2 x-1)(x-9) \rightarrow x=\frac{1}{2}, 9 \rightarrow$.
Therefore, the area of the rectangle is $8 \times 8=81$.
35. 29
$x^{2}-8 x=2 x \rightarrow x^{2}-10 x=0$
$\rightarrow z(x-10)=0 \rightarrow x=0,10$
$b=2 a \rightarrow b=2 \times 10=20$
36. 13
$a=\frac{-6+29}{2}=7 \rightarrow k=20-7=13$

Answer Explanations

37. 51.4

Let distance $=180$ miles. Average speed $\frac{\text { Total distance }}{\text { Total time }}=\frac{180+180}{180 / 60+180 / 45}=51.42857 \cdots \approx 51.4$
38. 22.5

The ratio of areas $\triangle B E F: \triangle E C D: \triangle A B C=1^{2}: 2^{2}: 3^{2}=1: 4: 9$, because the ratio of corresponding sides is 1:2:3. Let the areas of $\triangle B E F=k, \triangle E C D=4 k$, and $\triangle A B C=9 k$.
$9 k-k-4 k=4 k=10 \rightarrow k=2.5 \rightarrow \quad$ Area of $\triangle \mathrm{ABC}=9 k=9 \times 2.5=22.5$

Answer Explanations

11 Answers and Explanations										
	1	2	23	4	5	6	7,	-8 8	, 90	, ${ }^{30}$
SECTION	C	D	B	D	C	D	A	D	A	A
	11.	12	13.5	14	15.	16	-17.	-18.	19,	20
	B	D	B	D	D	144	15	48	3/2	2
	11.	- 2 2	-3, 3	1, 4	+ ${ }^{5}$	68	, 7 ,	. $8^{8} 8$		Hix
	B	B	C	D	B	D	C	A	B	B
	11	-12.	13	-14	16	16.	17	18	19	15820
SLCTIION	B	D	D	D	C	A	A	D	B	B
4	21.	22	23.	24	25.	26	27	28.	29.	30
	D	D	B	B	D	D	B	D	C	D
	31	32	33	- 34	35	36	37	38.		
	6	6	9.9	3	9	7.2	6	10		

SECTION 3

I. C

$$
\begin{aligned}
& \frac{3}{4}(x-2)+7=12-\frac{1}{2}(x-2): \text { Multiply by } 4 \\
& 3(x-2)+28=48-2(x-2) \\
& 5(x-2)=20 \rightarrow(x-2)=4 \rightarrow x=6
\end{aligned}
$$

2. D

$$
\begin{aligned}
& 5\left(x^{2}-6\right)=x^{2}+34 \rightarrow 5 x^{2}-30=x^{2}+34 \\
& 4 x^{2}=64 \rightarrow x^{2}=16 \rightarrow x= \pm 4
\end{aligned}
$$

3. B

$$
3 t+4 t=100 \rightarrow 7 t=100 \rightarrow t=\frac{100}{7}
$$

For Albert, $d=3 t=3\left(\frac{100}{7}\right)=\frac{300}{7}$ feet
4. D

$$
x^{3}+x^{2} y-x-y \rightarrow x^{2}(x+y)-(x+y)
$$

$(x+y)\left(x^{2}-1\right) \rightarrow(x+y)(x+1)(x-1)$
5. C
$\frac{1}{5}(x-5)(x-3)<0 \rightarrow 3<x<5$
6. D
$(x-5)(x+3)+10 \rightarrow x^{2}-2 x-15+10$
$\rightarrow x^{2}-2 x-5 \rightarrow(x-1)^{2}-6$
7. A
$A B=12 \rightarrow \frac{A C \cdot 12}{2}=96 \rightarrow A C=16$
$C D=16-9=7$
8. D
x-intercept: $x=-1,-1,1,2$
Since the graph falls down to the right and left, The best equation is $y=-(x+1)^{2}(x-1)(x-2)$.

Answer Explanations

9. A

A Slope of $3 x+4 y=12 \rightarrow y=-\frac{3}{4} x+3$ is $-\frac{3}{4}$. The slope of the perpendicular line m is $\frac{4}{3}$.
Therefore, the equation of line m is $y=\frac{4}{3} x$.
Solve the system of the equations.
$\frac{4}{3} x=-\frac{3}{4} x+3 \rightarrow \frac{25}{12} x=3 \rightarrow$ $x=3 \times \frac{12}{25}=1.44$
10. A

The graph of the absolute function is symmetric with respect to $x=-5$.
Therefore, $\frac{0+k}{2}=-5 \rightarrow k=-10$.
11. B

$$
(-2,5) \xrightarrow{\mathrm{T}_{-3,-8}}(-2-3,5-8) \rightarrow(-5,-3)
$$

12. D

$$
\begin{aligned}
& \frac{\left(\frac{x}{x+3}-\frac{4}{x}\right) \times(x)(x+3)}{\left(1-\frac{1}{x+3}\right) \times(x)(x+3)}=\frac{x^{2}-4(x+3)}{x(x+3)-x} \\
& =\frac{x^{2}-4 x-12}{x^{2}+3 x-x}=\frac{(x-6)(x+2)}{x(x+2)}=\frac{x-6}{x}
\end{aligned}
$$

13. B
$\frac{\sqrt[5]{a^{6}} \cdot \sqrt[5]{a^{4}}}{\sqrt[3]{a^{2}}}=\frac{a^{\frac{6}{5}}-a^{\frac{4}{5}}}{a^{\frac{2}{3}}}=\frac{a^{2}}{a^{\frac{2}{3}}}=a^{\frac{4}{3}}$
$n=\frac{4}{3}$
14. D
$2,000\left(1+\frac{0.024}{4}\right)^{41} \rightarrow 2,000(1+0.006)^{4 \times 15}$
$\rightarrow 2,000(1.006)^{60}$
15. D

Change the variable of the first function.
$f(x+1)=x^{2}-1 \rightarrow f(k+1)=k^{2}-1$
Now interchange $k+1=x-3 \rightarrow k=x-4$.
Therefore, $f(x-3)=(x-4)^{2}-1=x^{2}-8 x+15$.
16. 144

Since the ratio of $B E: D E=1: 3$, the ratio of the areas of $\triangle B C E: \triangle C D E=1: 3$. Therefore, the area of $\triangle C D E=18 \times 3=54$. The area of $A B C D=2(54+18)=144$.
17. 15

$\triangle A C D$ is isosceles. $A D=10 \sqrt{3}$ and $B D=\frac{A D}{2}$
18. 48

Product $=\frac{k}{1 / 2}=2 k=10 \rightarrow k=5$
$\operatorname{Sum}=\frac{k^{2}-1}{1 / 2}=2\left(k^{2}-1\right)=48$
19. $3 / 2$

When you solve the system of equations,
$a=2$ and $b=1$.
Therefore, $\frac{a+b}{a}=\frac{3}{2}$.
20. 2

Factor theorem
$f(1)=1+k^{2}+3 k-11=0$
$k^{2}+3 k-10=0 \rightarrow(k+5)(k-2)=0$
$k=-5,2 \rightarrow k=2$ (positive)

Answer Explanations

SECTION 4

1. B

Let $2 d=$ distance between two cities.
$\frac{d}{40}+\frac{d}{60}=5 \rightarrow$ (multiply by 120) $\rightarrow 2 d+3 d=600$
$5 d=600 \rightarrow d=120$
Therefore, $t($ Beth $)=\frac{120}{60}=2$ hours
2. B
$(x+y)^{2}-(x-y)^{2}=x^{2}+2 x y+y^{2}-\left(x^{2}-2 x y+y^{2}\right)$
$=4 x y$
3. C
$A+B=165, B+C=185, C+A=175$
When you add all thrcc equations,
$2(A+B+C)=525 \rightarrow A+B+C=262.5$.
$175+B=262.5 \rightarrow B=87.5$
4. D

Multiply by $(x+y)(x-y)$.
$x+5=x \rightarrow$ No solution.
You can use cross-multiplication.
5. B
$5(x+2)^{2}-15=45 \rightarrow(x+2)^{2}-3=9$
$(x+2)^{2}=12 \rightarrow(x+2)= \pm 2 \sqrt{3} \rightarrow$
$x=-2 \pm 2 \sqrt{3}$
6. D

Slope of line $m=\frac{6-0}{2-(-4)}=1$
Slope of line $\ell=-1$
The equation of line ℓ is $y-6=-1(x-2)$.
When $y=0 \rightarrow-6=-(x-2) \rightarrow x=8$
$Q R=8-(-4)=12$ and the height $=6$.
Therefore, area of $\triangle P Q R$ is $\frac{12 \times 6}{2}=36$.
7. C

The data are spread close from the mean.
8. A

$$
(x-1)(x+6)+4=x^{2}+5 x-6+4=3-6+4=1
$$

9. B

$P Q=\sqrt{13^{2}-5^{2}}=12$
Therefore, the area is $\frac{(4+9) \cdot 12}{2}=78$.
10. B

If the cost of Megan's order is x, then
$x+0.05 x=226.17 \rightarrow 1.05 x=226.17$
$\rightarrow x=215.4$
11. B

Cust of one sandwich $=a$, and cost of one salad $=b$, then $20 a+5 b=134$ and $a+b=8.5$.
When you solve the system of equations, $a=\$ 6.10$.
12. D
$8\left(2^{4 a}\right)=\frac{2^{2 h}}{2^{3}} \rightarrow 2^{3} \cdot 2^{4 a}=2^{2 b-3} \rightarrow 2^{3+4 a}=2^{2 h-3}$
Therefore,
$3+4 a=2 b-3 \rightarrow 2 b=4 a+6 \rightarrow b=2 a+3$
13. D
$\frac{a+b}{2}=\frac{2 a b}{a+b} \rightarrow(a+b)^{2}=4 a b \cdot \rightarrow$
$a^{2}+2 a b+b^{2}=4 a b \rightarrow a^{2}-2 a b+b^{2}=0 \rightarrow$
$(a-b)^{2}=0$
If $a=b$, it is always true. (From the original equation, a and b cannot be 0 .)
14. D

The graph of $f(x)$ is moved to the left by 1 and the height is reduced to half.
15. C

Answer Explanations

$a x-y=-b$
$5 x-3 y=a \quad$ In order to have infinitely many solutions, $\frac{a}{5}=\frac{-1}{-3}=\frac{-b}{a} . \rightarrow a=\frac{5}{3}$ and $b=-\frac{5}{9}$
16. A
$98=\frac{1}{2}(b)(a)^{2}$ and $K=\frac{1}{2}(2 b)(3 a)^{2}=18\left(\frac{1}{2} b a^{2}\right)$
Therefore, $K=18 \times 98=1764 \mathrm{Joules}$.
17. A
$r s^{2} t^{3} u^{3}>0 \rightarrow \frac{r s^{2} t^{3} u^{3}}{s^{2} l^{2} u^{2}}>\frac{0}{s^{2} t^{2} u^{2}} \rightarrow r u>0$
Since $u<0, \frac{r t u}{u}<0 \rightarrow r t<0$.
18. D

After I minutes, the additional time is $\frac{1000-c}{r}$.
Therefore, the total time is
$\frac{1000-k}{r}+t=\frac{1000-k-r t}{t}$.
19. B
$38-21=17 \%$ of the students is 136 and
$21-16=5 \%$ of the students is x.
Therefore, $\frac{17}{136}=\frac{5}{x} \rightarrow x=40$.
20. B

Since a farmer takes k days two farmers will takes $\frac{k}{2}$ days for the same job. Thercfore, it lakes k days for the two jobs.
$1 \times k=2 \times\left(\frac{k}{2}\right) \rightarrow\left(\frac{k}{2}\right) \times 2=k$ days
21. D

The radius of the circle is $\sqrt{3^{2}+4^{2}}=5$.
The area of the sector is $\frac{25 \pi}{4}$ and the area of the rectangle is $4 \times 3=12$. Therefore, the area of the shaded region is $\frac{25 \pi}{4}-12=\frac{25 \pi-48}{4}$.
22. D
$f(x)=x^{2}-2 x-8=\left(x^{2}-2 x+1\right)-9=(x-1)^{2}-9$
Therefore, the graph of $g(x)$ is moved to the right I unit and down 9 units.
23. B

The surface area is $(4 \cdot 4)+4\left(\frac{A B \cdot D F}{2}\right)=56$.
$16+8 \cdot D E=56 \rightarrow D E=\frac{56-16}{8}=5$
24. B
$(2 a-b)^{2}=(2 a+b)^{2}-8 a b \rightarrow$
$(2 a+b)^{2}=4^{2}-8 \cdot(-3)=40 \rightarrow$
$|2 a-b|=\sqrt{40}=2 \sqrt{10}$
25. D

The rate of increase in height is getting slower.
26. D

Since $A C=15$ and $C D=6$, the ratio of corresponding sides is $15: 6$ or $5: 2$.
Because $\triangle A B C$ and $\triangle C D E$ are similar, The ratio of their area is $25: 4$. Define their area as $25 k$ and $4 k .25 k=\frac{9 \times 12}{2}=54 . \rightarrow k=2.16$
Therefore, the area of $\triangle C D E$ is
$4 k=4 \times 2.16=8.64$.
Or, find $D E$ and $C E$ using similar.
Area $=\frac{D E \times C E}{2}=8.64$.
27. B

From the equation $O C=10$ and x-intercept is -20.
Since $\triangle A B C$ and $\triangle C D O$ are similar, $\frac{C B}{A B}=\frac{1}{2} \rightarrow C B=k$ and $A B=2 k$.

Answer Explanations

The area of $\triangle A B C$ is
$\frac{k \times 2 k}{2}=36 . \rightarrow k^{2}=36 \rightarrow k=6$
Therefore, $A B=2 k=2(6)=12$.
28. D)
$f(x)=3(\sqrt{8 x-4}+2)=3 \sqrt{8(x-0.5)}+6$
The graph of $g(x)$ is moved to the right by 0.5 and up 6 .
29. C

Since $\frac{x}{y}=\left(\frac{1}{2}\right)^{\frac{1}{3}}, \frac{y}{x}=\frac{1}{\left(\frac{1}{2}\right)^{\frac{1}{3}}}=\left(\frac{1}{2}\right)^{-\frac{1}{3}}=2^{\frac{1}{3}}=\sqrt[3]{2}$
$(x y)\left(\frac{y}{x}\right)=\sqrt[3]{32} \times \sqrt[3]{2} \rightarrow y^{2}=\sqrt[3]{64}=4 \rightarrow$
$y= \pm 2$
30. D

We know that $0 \leq x \leq 3$ is the solution of the inequality $a x(x-3) \leq 0$. Therefore, we can define $f(x)=a x(x-3)$.
$f(4)=a(4)(4-3)=8 \rightarrow 4 a=8 \rightarrow a=2$
Therefore, $f(x)=2 x(x-3)$.
$f(5)=2(5)(5-3)=20$
31. 6

Putting $x=2$ in the equation,

$$
\begin{aligned}
& 8-12+16-a=0 \rightarrow a=12 . \\
& -a=-2 b \rightarrow-12=-2 b \rightarrow b=6
\end{aligned}
$$

Or you can put any number except 2 in the equation. For example, $x=1$.
$1-3+8-12=(1-2)(1-1+b) \rightarrow-6=-b$
32. 6

From the formula:
$a+b=k=12$
$a b=k-6=12-6=6$
33. 9.9
$x(x-4)=x+6 \rightarrow x^{2}-5 x-6=0$
$(x-6)(x+1)=0 \rightarrow x=-1,6$
When $x=-1, y=5$. When $x=6, y=12$.
Distance between $(-1,5)$ and $(6,12)$ is
$d=\sqrt{(6--1)^{2}+(12-5)^{2}}=\sqrt{98} \approx 9.9$.
34. 3

$\triangle O B C$ is a special right triangle: $30-60-90$
Since y-intercept is $f(0)=1, s \sqrt{3}=1$.
$s=\frac{1}{\sqrt{3}} \rightarrow$ Coordinates of point $C=\left(\frac{1}{\sqrt{3}}, 0\right)$
Putting this coordinates into the equation,
$0=-k\left(\frac{1}{\sqrt{3}}\right)^{2}+1 \rightarrow k\left(\frac{1}{3}\right)=4 \cdots k=3$
35. 9

Find the points of intersection.
$-x^{2}+4 x+5=-x+5 \rightarrow x^{2}-5 x=0$
$x(x-5)=0 \rightarrow x=0,5$
We know the solution set is the arca between
These two graphs. But the quadratic function has a
maximum at $x=\frac{-b}{2 a}=\frac{-4}{2(-1)}=2$.
Therefore, the maximum of b is
$f(2)=-2^{2}+4(2)+5=9$.

Answer Explanations

The graphs of $y=-x^{2}+4 x+5$ and $y=-x+5$
Are as follows.
$y=-x^{2}+4 x+5=-(x-2)^{2}+9$

Therefore the maximum value of b is 9 .
36. 7.2

Then $O R=4 k$. The area of $\triangle O P R$ is
$\frac{(3 k)(4 k)}{2}=54 \rightarrow 6 k^{2}=54 \rightarrow k^{2}=9 \rightarrow k=3$.
$P R=5 k=5(3)=15$
The area of $\triangle O P R=\frac{15 \times r}{2}=54 \rightarrow r=7.2$
37. 6

If x-coordinate is a, the coordinates of point Q
is $\left(a, 2 a^{2}\right)$. Now we know that $P Q=2 a$ and $O R=2 a^{2}$. Therefore, the area of $\triangle O P Q$ is $\frac{(2 a)\left(2 a^{2}\right)}{2}=2 a^{3}=54 \cdot a^{3}=27 \rightarrow a=3$ $P Q=2(3)=6$
38. 10

Slope of $\overline{A B}=\frac{a-4}{4}$ and slope of $\overline{B C}=\frac{25-a}{a}$ The slopes on the same line are equal.
$\frac{a-4}{4}=\frac{25-a}{a} \rightarrow a^{2}-4 a=100-4 a \rightarrow$ $a^{2}=100 \rightarrow a=10$

Answer Explanations

Test 12			Answers and Explanations							
SECTION 3	1-1	2	3	, 4	5, 5	6	-7	8	2	10
	-		-			B	A	B	A	D
	A	C	A	C	D	B	A			20
	- 11.	${ }^{12}$	13	14	-15	16	17.	18	19.	20.
					B	-	36	18	200	8
	A	B	D	C	B	36				젲
			2-3 3	- $4 \times$	-5.5.	58, 6×8	7	${ }^{8}$	9	-10
	-	大-2.	4, ${ }^{3}$	--4ac	Wexk				C	B
	C	C	C	A	D	B	C	C	C	- 3 B
	11		20	14%	15	13. 16	17	18.	19	$20 \text { 等 }$
		- S^{2}	-20	3\%			B	B	D	B
	A	A	C	C	D	C	B			
	21	-22	423	24	25	-26	27	28.	29.	30×8
	21.				A	B	B	C	D	B
	B	A	D	B	A	B				
	31	32	33	- 34	35.	36.	37	38		
	15	4	14/3	12	39	41	54	21		

SECTION 3

1. A
$2 a+8=14 \rightarrow a=3$ Putting $a=4$ in the equation
$9 b-12 b+42=0 \rightarrow 3 b=42 \rightarrow b=14$
2. C
$6 a^{2}-24 b^{2}=6\left(a^{2}-4 b^{2}\right)=6(a+2 b)(a-2 b)=$
$6\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)=1$
3. A
$a-b=(3+2 i)-(3-2 i)=4 i$
$a^{2}-2 a b+b^{2}=(a-b)^{2} \rightarrow(4 i)^{2}=-16$
4. C

$$
\left\{\begin{array} { l }
{ \frac { \sqrt { x } } { 2 } + \sqrt { y } = 5 } \\
{ \sqrt { x } - \frac { \sqrt { y } } { 2 } = - \frac { 1 } { 2 } }
\end{array} \rightarrow \left\{\begin{array}{l}
\frac{\sqrt{x}}{2}+\sqrt{y}=5 \\
2 \sqrt{x}-\sqrt{y}=-1
\end{array}\right.\right.
$$

Using addition,
$\frac{5 \sqrt{x}}{2}=4 \rightarrow \sqrt{x}=\frac{8}{5} \rightarrow x=\frac{64}{25}$
When $x=\frac{64}{25}, y=\frac{441}{25}$.
Therefore, $a=\frac{64}{25}$
5. D

The equation of the line is $C=\left(\frac{250-50}{6}\right) d+50$.
Therefore, $C(21)=\left(\frac{200}{6}\right)(21)+50=750$.
6. B

Answer Explanations

7. A

There are 450 under 18 years and 220 prefer smartphone to see movies. Therefore,
$\frac{220}{450}=0.48 . \overline{8} \approx 0.49$
8. B
$n(A \vee B)=n(A)+n(B)-n(A \wedge B)$
$\rightarrow 420+240-100=560$
9. A

Axis of symmetry: $x=\frac{-k}{4}$
Midpoint of -2 and 8 is $\frac{-2+8}{2}=3$
They must be equal. $\rightarrow \frac{-k}{4}=3 \rightarrow k=-12$
10. D

The resulting equation is
$y=(x-5)^{2}+3 \rightarrow y=x^{2}-10 x+28$.
11. A

Since $\triangle A E D \sim \triangle C D F, \frac{A D}{D C}=\frac{3}{2}$ and $\frac{\text { area of } \triangle A B D}{\text { area of } \triangle C B D}=\frac{3}{2}$. Therefore, the area of $\triangle A B D$ is $78 \times \frac{3}{5}=46.8$.
12. B
$p(3)=2(9+3 a+2)-5(3-b)=0 \rightarrow 3 a+5 b=-7$
$p(1)=(1+a+2)-5(1-b)=0 \rightarrow 2 a+5 b=-1$
Using subtracting, $a=-6$.
13. D

$$
y=x(x-2)=x^{2}-2 x \rightarrow y=(x-1)^{2}-1
$$

From the equation, x-intercept $\rightarrow 0$ and 2
And vertex: $(1,-1)$
In the $x y$-plane above, when $k=-3$, no solution.
14. C

From $y=x-4, A O=4, B O=4$, and $A B=4 \sqrt{2}$. Area of $\triangle A O B=\frac{4 \times 4}{2}=\frac{4 \sqrt{2} \times h}{2} \rightarrow h=2 \sqrt{2}$
15. B

Coordinates of point $B \rightarrow(6,0)$ and slope of $\overline{P Q}$ is $-\frac{5}{3}$. Equation of the line: $y=-\frac{5}{3} x+b$ Putting $(3,5)$ in the equation, $5=-\frac{5}{3}(3)+b$ $\rightarrow b=10$.
16. 36

An exterior angle of the regular pentagon is $\frac{360}{5}=72$ and an interior angle is 108.
Therefore, $x+72=108 \rightarrow x=36$.
17. 36
$\frac{\sqrt{x^{2}}+2 \sqrt{x}}{6}=8 \rightarrow(\sqrt{x})^{2}+2 \sqrt{x}-48=0$
$(\sqrt{x}+8)(\sqrt{x}-6)=0 \rightarrow \sqrt{x}=6,-8(\sqrt{x}>0)$

Answer Explanations

Therefore, $x=36$.
18. 18

Since $\sin \angle B A C=0.6=\frac{3}{5}$, let $A B=5 k$ and $A C=4 k$. Area of the triangle is
$\frac{(3 k)(4 k)}{2}=216 . \rightarrow 6 k^{2}=216 \rightarrow k=6$
Therefore, $B C=3 k=3(6)=18$.
19. 200

$$
B D^{2}=A D \cdot D C \rightarrow 120^{2}=90 \cdot D C \rightarrow D C=160
$$

Therefore, $B C=200$. (Pythagorean Theorem)
20. 8

In the shaded region of the solution set, b has a maximum at point $P . P$ is a point of intersection of the system of equations.

$$
\begin{aligned}
& \left\{\begin{array}{l}
x^{2}+y^{2}=100 \\
x=y-2
\end{array}\right. \\
& (y-2)^{2}+y^{2}=100 \rightarrow 2 y^{2}-4 y+4=100
\end{aligned} \begin{aligned}
& y^{2}-2 y-96=0 \rightarrow(y-8)(y+6)=0 \\
& y=8 \text { or }-6 .
\end{aligned}
$$

The maximum of $b=8$.

SECTION 4

1. C
2. C

There are 37 seniors out of 64 .
3. C

24 (girls) +27 (juniors) $-7($ girls \wedge juniors $)=44$
4. A

Average rate of change
$=\frac{12-6}{4}=1.5$ inches per month
5. D
$k=\sqrt{\frac{a b}{a+b}} \rightarrow k^{2}=\frac{a b}{a+b} \rightarrow a k^{2}+b k^{2}=a b$
$a k^{2}=a b-b k^{2} \rightarrow a k^{2}=b\left(a-k^{2}\right) \rightarrow b=\frac{a k^{2}}{a-k^{2}}$
6. B
$P(x)=-0.5 x^{2}+600 x+100-200 x-150$
$P(x)=-0.5 x^{2}+400 x-50$
P has a maximum at $x=\frac{-(400)}{2(-0.5)}=400$.
7. C

For $x=1 \rightarrow 1-3+k=0 \rightarrow k=2$.
$c=k \times(-1)=2 \times(-1)=-2$
8. C

Total travel distance is $p h$ miles.
\# of gallons $=\frac{p h}{m}$
9. C
$f(x)=(x+a)^{2}-36$
Zeros: $x^{2}+2 a x+a^{2}-36=0$
Sum $=\frac{-2 a}{1}=-10 \rightarrow a=5$
Produc $=\frac{a^{2}-36}{1}=\frac{5^{2} \cdots 36}{1}=-11$

Answer Explanations

10. B

$$
\begin{aligned}
& \pi r^{2} h=2 \pi r^{2}+2 \pi r h \rightarrow r h=2 r+2 h \\
& r(h-2)=2 h \rightarrow r=\frac{2 h}{h-2}
\end{aligned}
$$

11. C

Cofunction: If $A+B=90$, then $\sin A=\cos B$.
12. A
$A=\frac{400}{40}=10 \quad B=\frac{450}{50}=9 \quad C=\frac{500}{55}=9.09$
$D=\frac{550}{58}=9.48 \quad E=\frac{600}{62}=9.68$
13. C
$d=s(2)-s(1)=\frac{1}{2}(9.8)(4)-\frac{1}{2}(9.8)(1)=14.7$
14. C

Average speed
$=\frac{s(4)-s(2)}{4-2}=\frac{\frac{1}{2}(9.8)(16)-\frac{1}{2}(9.8)(4)}{2}=29.4$
15. D

For $x=5, f(5)=4$ and $g(5)=-2$.
$f(5)+2 g(5)=4+2(-2)=0$
16. C

50 cents per 0.2 mile $\rightarrow \$ 2.50$ per mile
$C=5+2.5(x-2) \rightarrow 25=5+2.5(x-2)$
$(x-2)=8 \rightarrow x=10$ miles
17. B
$y=3^{k(x)}$ has a maximum at a maximum value of
k. $k(x)=-x^{2}+8 x-12 \rightarrow k(x)=-(x-4)^{2}+4$

The maximum of k is 4 .
Therefore, the maximum of y is $3^{11}=81$.
18. B

The two triangles are similar and ratio of corresponding sides are 4:6. Therefore, the ratio of their heights are also 4:6. Let define their heights as $4 k$ and $6 k .4 k+6 k=8 \rightarrow k=0.8$
The heights are $4 k=3.2$ and $6 k=6.8$.
Therefore, sum of the areas of the triangles is $\frac{4 \times 3.2}{2}+\frac{6 \times 4.8}{2}=20.8$.
19. D

The ratio of the radius of the three identical circles and the largest circle is $1: 1: 1: 3$.
The ratio of their areas is $1: 1: 1: 9$.
Definc their areas as $k, k, k, 9 k$.
Since $3 k=15 \rightarrow k=5$. Therefore the area of the largest circle is $9 k=9(5)=45$.
20. B

Since $O C=k$ and $A B=2 \sqrt{x}$, $\frac{2 \sqrt{k} \times k}{2}=27 \rightarrow k^{\frac{3}{2}}=27 \rightarrow k=9$
21. B

Let $S=$ sum of the three numbers.
$a+s=1.25 S+S \rightarrow 2.25 S=2835 \rightarrow S=1260$
Therefore, average is $\frac{1260}{3}=420$.
22. A

The resulting equation is $y=(x-3)^{2}-4$.
$y=x^{2}-6 x+9-4 \rightarrow y=x^{2}-6 x+5 \rightarrow$
$y=(x-1)(x-5)$
23. D

Answer Explanations

Axis of symmetry: $x=\frac{2+6}{2}=4$
From the equation, axis of symmetry is
$x=-\frac{b}{2} . \rightarrow-\frac{b}{2}=4 \rightarrow b=-8$
Now, $f(x)=x^{2}-8 x+c$.
Using the point $(2,4)$ or $(6,4)$,

$$
4=2^{2}-8(2)+c \rightarrow c=16
$$

24. B

$y=(x-5)^{2} \rightarrow$ At $x=10, y=(10-5)^{2}=25$
Thereforc, $k=25$.
25. A

From the equation: $a+b=6$ and $a b=2$.
$(a+1)(b+1)=a b+a+b+1=2+6+1=9$
26. B

The remainder is $a x+b$ when $p(x)$ is divided by $(x+1)(x-1)$. Since divisor is degree 2 polynomial, the remainder is degree one polynomial.

$$
\begin{aligned}
& p(x)=(x-1)(x+1) q_{3}(x)+a x+b \\
& p(x)=(x-1) q_{1}(x)+2 \\
& p(x)=(x+1) q_{2}(x)-4 \\
& p(1)=2=a+b \rightarrow \quad \text { from (1) and (2) } \\
& p(-1)=-4=-a+b \rightarrow \quad \text { from (1) and (3) }
\end{aligned}
$$

Solve the system of equations.
$a=3$ and $b=-1$. Therefore, the remainder is $3 x-1$.
27. B

$$
\begin{aligned}
& \cos (3 x+20)^{\circ}=\sin (x+10)^{\circ} \rightarrow \text { cofunction } \rightarrow \\
& 3 x+20+x+10=90 \\
& 4 x=60 \rightarrow 2 x=30
\end{aligned}
$$

Therefore, $\sin 2 x=\sin 30=\frac{1}{2}$.
28. C

1) Change variable.
$f(x-1)=x^{2}-1 \rightarrow f(k-1)=k^{2}-1$
$k-1=x \rightarrow k=x+1$
2) Replace k with x.
$f(x)=(x+1)^{2}-1 \rightarrow f(x)=x^{2}+2 x$
Or, simply substitute $x+1$ in the equation.
29. D

Since $(-1,2)$ is a solution,
$2>-2(-1)+a \rightarrow a<0$ and
$2<2(-1)+b \rightarrow b>4$
Since $a-b<0$, choice D is always truc.
30. B

Since the slope of the line is $1, A O=B O$.
Triangle $B O P$ is isosceles with $P O=P B$.
Therefore, $O B=10 \sqrt{2} \approx 14.14$.
31. 15

$\triangle A B O$ is isosceles with $A O=B O=10$.

$$
O D=\frac{1}{2} \cdot O B=5 \rightarrow A D=10+5=15
$$

32. 4

Answer Explanations

$f(x)=3$ intersects the vertex of
$f(x)=x^{2}-2 x+k \rightarrow f(x)=(x-1)^{2}+k-1$
Therefore, $k-1=3 \rightarrow k=4$.
33. $\frac{14}{3}$

Collincar: Slopes between any two points are equal.
$\frac{8-0}{0-12}=\frac{k-0}{5-12} \rightarrow k=\frac{14}{3}$
34. 12

From $a+b+(a b) i=4+2 i$,
$a+b=4$ and $a b=2$.
$(a+b)^{2}=4^{2} \rightarrow a^{2}+b^{2}+2 a b=16$
$a^{2}+b^{2}=16-2 a b \rightarrow a^{2}+b^{2}=16-4=12$
35. 91
$10 \times 85=850$ and $12 \times 86=1032$
The average of the new students is $\frac{1032 \cdot 850}{2}=91$.
36. 41

For $x=-5, f(-1)=(-5)^{2}-3(-5)+1=41$
37. 54

$\triangle A E M$ and $\triangle B C E$ are similar.
$\frac{B C}{A M}=\frac{F E}{G E}=\frac{2}{1} \rightarrow F E=12$ and $G E=6$
Area of $\triangle A B E=$ area of $\triangle A B C-$ area of $\triangle B E C$
$=\frac{18 \times 18}{2}-\frac{18 \times 12}{2}=162-108=54$.
38. 21.9
$B D=4$ and $C D=4 \sqrt{3}$
Area of $\triangle A B C=\frac{(4+4 \sqrt{3}) 4}{2} \approx 21.9$

Answer Explanations

Test 13 Answers and Explanations										
	1	2	3	4	5	6	- 7	- 8	9.	10
	D	D	C	B	D	D	C	D	A	C
	11.	12	13	14	\% 15	16	17	18	19	20
	D	B	A	B	C	25	6	18	2	2
	\% 1.12	2	- 3 ,	4.4.und	14593	64	4	4. 8°. ${ }^{\text {a }}$	93	10
	D	D	C	C	D	D	D	A	D	B
	11.	-12	13	14	15×1	\% 16.	4 17	18	19	20
	C	B	B	C	C	A	D	B	B	B
	21	22	23.	- 24	-25	46	27	28.	29	30
	C	C	C	C	A	A	c	D	B	B
	31	32	- 33	34	35	36	37	38		
	6	10	8	1	10	3	2	2		

SECTION 3

$f(k-1)=-5 k+2$
Now exchange $k-1=x+2 \rightarrow k=x+3$
$f(x+2)=-5(x+3)+2=-5 x-13$
5. D
$2 x^{2}+8 x+10=2(x+2)^{2}+2$
6. D

$$
\begin{aligned}
& \frac{2 \sqrt{a}-\sqrt{b}}{2 \sqrt{b}}=\frac{1}{4} \rightarrow 8 \sqrt{a}-4 \sqrt{b}=2 \sqrt{b} \\
& 8 \sqrt{a}=6 \sqrt{b} \rightarrow \frac{\sqrt{a}}{\sqrt{b}}=\frac{6}{8}=\frac{3}{4} \rightarrow \frac{a}{b}=\frac{9}{16}
\end{aligned}
$$

7. C
$0=x^{2}-9 \rightarrow x= \pm 3$ (zcros)
Al point $Q, g(3)=-\frac{1}{8}(3)^{2}+k=0 \rightarrow k=\frac{9}{8}$
8. D

$$
\frac{x^{2}}{4}-x=\frac{k}{2} \rightarrow x^{2}-4 x-2 k=0
$$

Answer Explanations

In order to have two unequal real roots, discriminant $D=b^{2}-4 a b>0$. Therefore,

$$
D=(-4)^{2}-4(1)(-2 k)>0 \rightarrow 8 k>-16
$$

$$
\rightarrow k>-2
$$

9. A

$$
\begin{aligned}
& (2-i)(3+2 i)-5 i=a+b i \rightarrow 8-4 i=a+b i \\
& a=8, b=-4
\end{aligned}
$$

10. C

Therefore, $h=5+5+5 \sqrt{3}=10+5 \sqrt{3}$.
11. D

$$
p=p_{0}(1-0.025)^{\frac{1}{10}}=p_{0}(0.975)^{\frac{40}{10}}=p_{0}(0.975)^{4}
$$

12. B
$\left\{\begin{array}{l}x^{2}-5 x-11=a\left(x^{2}-1\right)+b(x+1)+c \\ x^{2}-5 x-11=a x^{2}+b x-a+b+c\end{array}\right.$
From the equation, $a=1, b=-5$, and $c=-5$.
13. A

	Speed	Time	Distance
Office	x	0.4 hr	$0.4 x$
Home	$x+15$	0.25 hr	$0.25 x+3.75$

Distance is equal. $0.4 x=0.25 x+3.75 \rightarrow x=25$
Therefore, $d=0.4 \times 25=10$ miles.
14. B

Two zeros at points $R(-4,0)$ and $S(2,0)$.

$$
R S=2-(-4)=6
$$

Axis of symmetry $=\frac{(-4)+2}{2}=-1$

$$
f(-1)=a(-1+4)(-1-2)=-9 a
$$

Therefore, area of $\triangle R P S=\frac{1}{2}(6)(-9 a)=-27 a$
15. C

$$
2 x^{2}-5 x+4=(x+1)(x-1) Q(x)+a x+b
$$

When you divide degree 2 polynomial, the remainder is degree $1(a x+b)$.
Using Remainder Theorem,
$P(-1)=11=-a+b$ and $P(1)=1=a+b$
From the system of equations above,
$a=-5, b=6$.
16. 25
$\triangle A X B$ is a right triangle with $\angle X=90^{\circ}$.
$\angle B=25^{\circ}$, and $\angle B=\angle X=25^{\circ}$ (Inscribed angles for the same arc are equal in measure.)
17. 6
$x^{2}-8 x-3+y^{2}-6 y=k^{2} \rightarrow$
$\left(x^{2}-8 x+16\right)+\left(y^{2}-6 y+9\right)=k^{2}+3+16+9 \rightarrow$
$(x-4)^{2}+(y-3)^{2}=k^{2}+28$
Therefore,
$r^{2}=k^{2}+28=8^{2} \rightarrow r^{2}=36 \rightarrow r=6$.
18. 18
$(2 x-2)(x-7)=2(x-a)^{2}-b \rightarrow$
$2 x^{2}-16 x+14=2 x^{2}-4 a x+2 a^{2}-b$
Identical equation: $-4 a=-16 \rightarrow a=4$
$2 a^{2}-b=14 \rightarrow b=2 a^{2}-14=2(4)^{2}-14=18$
19. 2
$x^{3}-a x^{2}+b x-4=(x+1)(x+2)(x-k)$
At $x=-1,-1-a-b-4=0 \rightarrow-a-b=5$
At $-2,-8-4 a-2 b-4=0 \rightarrow-2 a-b=6$
From the system of equations, $a=-1, b=-4$.
$f(x)=x^{3}+x^{2}-4 x-4=0 \rightarrow$
$x^{2}(x+1)-4(x+1)=0 \rightarrow(x+1)\left(x^{2}-4\right)=0$
$(x+1)(x+2)(x-2)=0 \rightarrow x=-1,1,2$
Therefore, $k=2$.
Or, simply, product of the roots is
$(-1)(-2)(k)=\frac{-4}{1}(-1)=4 \rightarrow 2 k=4 \rightarrow k=2$.

Answer Explanations

20. 2
$x^{2}=m x-1 \rightarrow x^{2}-m x+1=0$
Because the line is tangent to the parabola, $D=b^{2}-4 a c=0 \rightarrow D=m^{2}-4=0$
Therefore, $m= \pm 2 \rightarrow m=2$ (Positive slope)

SECTION 4

1. D

Let $x=$ number of days. Slope is m (rate) and
y-intercept is 4. Therefore, $y=m x+k$.
When $x=6, y=6 m+k$.
Or use arithmetic sequence.
$a_{7}=k+(7-1) m=k+6 m$
2. D
$3 b+4 s=Q$ and $b+2 s=P$
Subtract the system of equations above.
$2 b+2 s=Q-P \rightarrow b+s=\frac{Q-P}{2}$
3. C
$x+16<2 x+1<x+46 \rightarrow x+15<2 x<x+45$
When subtract $x, \quad \rightarrow 15<x<45$
midpoint $=\frac{15+45}{2}=30$, and distance from MP to the end point is $45-30=15$. Now substitute in the formula. $|x-30|<15$
4. C

Since $\triangle A B C \sim \triangle D B E, \frac{A B}{D B}=\frac{3}{2}$ and the ratio of their areas is $3^{2}: 2^{2}=9: 4$. Let their areas be $9 k$ and $4 k$. The area of shaded region is
$9 k-4 k=5 k$. Because $9 k=45, k=5$ and $5 k=5(5)=25$.
5. D
$\frac{1}{10} x^{2}+\frac{1}{5} x+\frac{1}{20}=0 \rightarrow 2 x^{2}+4 x+1=0$
Using the quadratic formula,
$x=\frac{-4 \pm \sqrt{(-4)^{2}-4(2)(1)}}{2}=-2 \pm 2 \sqrt{2}$
6. D

A: Graph is open downward and maximum is $\sqrt{3}$. It has two roots.
B: Two roots $x=5,-9$
C: Graph open upward and its minimum is negative. It has two roots.
D: axis of symmetry is $x=\frac{1+7}{2}=4$
$f(4)=(4-1)(4-7)+10=19$ Graph open upward and minimum is 19 . There is no x-intercept.
7. D

Initial amount is 800 . Therefore,
$f(x)=800\left(1-\frac{1}{2}\right)^{\frac{1}{100}}=800\left(\frac{1}{2}\right)^{\frac{1}{100}}$
8. A

$$
800\left(\frac{1}{2}\right)^{\frac{1000}{100}}=800\left(\frac{1}{2}\right)^{10}=0.78125
$$

9. D
$g(x)=x^{2}+12 x+20=(x+6)^{2}-16$
Compare with $f(x)=x^{2}$.
10. B

Use special triangle's ratio. The area of the trapezoid is $\frac{(3 a+a) \times a \sqrt{3}}{2}=2 a^{2} \sqrt{3}$.
11. C
$f(x)=f(-x) \rightarrow \quad$ Reflection in the y-axis
12. B

The points of intersection of the graphs are $(-2,0)$ and $(3,5)$. Slope of the line is $\frac{5-0}{3-(-2)}=1$. The line is $y=x+k$.

Answer Explanations

Substifule either of the points. $\rightarrow(-2,0)$
$0=-2+k \rightarrow k=2$

13. B

Similar triangles: $\frac{9}{x}=\frac{15}{30} \rightarrow x=18$
14. C

Radius is 12. $O P=12, S P=24$ and $\angle O P S=60^{\circ}$
Therefore, $O S=12 \sqrt{3}$. Area of $\triangle O S P$ is
$\frac{1}{2}(12)(12 \sqrt{3})=72 \sqrt{3}$, and area of the sector is $\pi(12)^{2} \times \frac{1}{6}-24 \pi$.
Area of the shaded area is $72 \sqrt{3}-24 \pi$.
15. C
$f(-2)=-4+4+3=3$ and
$f(2)=-4-4+3=-5$
Graph has a maximum at $x=-1$
(Axis of symmetry: $x=\frac{-b}{2 a}=\frac{2}{-2}=-1$)
$f(-1)=-1+2+3=4 \rightarrow 4>3$
Therefore, the range of f is $-5 \leq f \leq 4$.
16. A

In the scatterplot, for 175 pornds
Actual force is 600 and predicted force is 900 .
Percent increase is $\frac{900-600}{600} \times 100=50 \% / 2$
17. D

Since $\sqrt[3]{a^{2 x+3}}=\sqrt{a^{x-2}} \rightarrow a^{\frac{2 x+3}{3}}=a^{\frac{x-2}{2}}$,
$\frac{2 x+3}{3}=\frac{x-2}{2} \rightarrow 4 x-6=3 x-6 \rightarrow x=-12$.
18. C

	speed	time	distance
truck	40	r	$40 r$
car	60	$r-3$	$60 r-180$

Same distance: $40 x=60 x-180 \rightarrow r=9$
Therefore, $x-3=9-3=6$.
19. B

Area of $\triangle O P R$ is $\frac{k(k-2)}{2}=24$. From the
equation, $k^{2}-2 k-48=0 \rightarrow(k-8)(k+6)=0$
$k=8(\because k>0)$, slope is $\frac{k-2}{k}=\frac{8-2}{8}=\frac{3}{4}$.
20. B

$$
\begin{aligned}
& \frac{z-i}{z+1}=\frac{a+b i-i}{a+b i+1}=3 \rightarrow a+b i-i=3 a+3 b i+3 \\
& a+(b-1) i=3 a+3+3 b i
\end{aligned}
$$

Because it is an identical equation,

$$
a=3 a+3 \rightarrow a=-\frac{3}{2} .
$$

21. C

Gender	Junior	Senior
Female	$3 x$	x
Male	$5 y$	y
Total	66	18

From the table above,
$3 x+5 y=66$ and $x+y=18$.

Answer Explanations

From the system of equations, $y=6$.
Therefore, male-juniors is $5 y=5(6)=30$.
22. C
$V=\pi r^{2} h$ and $V^{\prime}=\pi(1.1 r)^{2} h^{\prime}$, where
$V^{\prime}=$ new volume and $h^{\prime}=$ new height.
Since new volume decreases by $8 \%, V^{\prime}=(1-0.08) \mathrm{V}$.
$\pi(1.1 r)^{2} h^{\prime}=0.92 \pi r^{2} h \rightarrow 1.21 h^{\prime}=0.92 h$
Therefore, $h^{\prime}=\frac{0.92}{1.21} h=0.76 h \rightarrow h^{\prime}=(1-0.24) h$.
$0.24=24 \% \rightarrow k=24$
23. C

Axis of symmetry: $t=\frac{-80}{2(-16)}=2.5$
For 3 to 5 seconds, the ball is moving down.
$h(3)=-144+240+108=204$
$h(5)=-400+400+180=108$
Average rate of change is
$\frac{108-204}{5-3}=-48$ feet/second. (negative means"
moving downward")
24. C

$$
y=\frac{1}{50}(x-100)(x-b)
$$

For point $(300,200)$
$200=\frac{1}{50}(200)(300-b) \rightarrow 50=300-b$
Therefore, $b=250$. The length of the bridge is $250-100=150$ meters.
25. A

Axis of symmetry is $x=\frac{100+250}{2}=175$
$f(175)=\frac{1}{50}(175-100)(175-250)=$
$\frac{1}{50}(75)(-75)=-112.5$ meters
Therefore, the depth of the river is 112.5 meters.
26. A

Since $\sin \left(a^{\circ}\right)=\cos \left(b^{\circ}\right), \triangle A B C$ is a right triangle.

By the Cofunction formula,
$(2 x-15)+(5 x-21)=90 \rightarrow 7 x=126 \rightarrow x=18$.
$a=2(18)-15=21$ and $b=5(8)-21=69$
Therefore, $A B=10 \cos (69)$ and $A C=10 \cos (21)$.
Area of $\triangle A B C$ is
$\frac{1}{2}(10 \cos 69)(10 \cos 21)=16.72 \cdots \approx 17$.
27. C

$$
x^{2}+y^{2}-4 x+4 y-8=0 \rightarrow(x-2)^{2}+(y+2)^{2}=16
$$

Radius is 4 . New radius is $4+2=6$.
For 2 units up,
$(x-2)^{2}+(y+2-2)^{2}=6^{2} \rightarrow(x-2)^{2}+y^{2}=36$
28. D

Radius of the circle is 2 , and central angle is 165°.
Therefore, area of the sector is $\pi(2)^{2} \times \frac{165}{360}=\frac{11}{6} \pi$.
29. B
$(x-1)^{4}+2(x-1)^{2}+x-1 \rightarrow$
$(1-i-1)^{4}+2(1-i-1)^{2}+1-i-1=(-i)^{4}+2(-i)^{2}-i$
$=1-2-i=-1-i$
30. B
$\frac{x-1}{2}=-3 \rightarrow x=-5$
Substitute into the equation: $f(-3)=(-5)^{2}+1=26$

Answer Explanations

31. 6

Area is $\frac{(a+2)(a-2) 8}{2}=4\left(a^{2}-4\right)=128$.
$a^{2}-4=32 \rightarrow a^{2}=36 \rightarrow a=6$
32. 10
$\sqrt{x-1}+7=x \rightarrow \sqrt{x-1}=x-7$
$x-1=x^{2}-14 x+49 \rightarrow 0=x^{2}-15 x+50$
$(x-5)(x-10)=0 \rightarrow x=5$ or 10
For $x=5, \sqrt{5-1} \neq 5-7$. Answer is 10 .
33. 8

$B D=10 \sin \angle B A D=10(0.4)=4$
$\sin \angle B C D=\frac{4}{C D} \rightarrow C D=\frac{4}{0.5}=8$
34. 1

Let $\sqrt{x}+2=k . \rightarrow k>0$
$k^{2}-2 k-3=0 \rightarrow(k-3)(k+1)=0 \rightarrow k=3,-1$
$k=-1$ is not working.
For $k=3, \sqrt{x}+2=3 \rightarrow \sqrt{x}=1 \rightarrow x=1$
35. 10
$(x-1)^{2}-3(x-1)=y$
$6 x-6=y \rightarrow y=6(x-1)$
Substitute $y=6(x-1)$ in the equation.
$(x-1)^{2}-3(x-1)=6(x-1) \rightarrow(x-1)^{2}-9(x-1)=0$
$(x-1)(x-1-9)=0 \rightarrow(x-1)(x-10)=0$
$x=1$ or 10
But, when $x=1, y=0($ not working $y \neq 0)$.

Therefore, the valuc of x is 10 .
36. 3
$y=\frac{x^{2}-4}{(x-3)(x-2)}=\frac{(x+2)(x-2)}{(x-3)(x-2)}=\frac{x+2}{x-3}$
Denominator $x-3=0 \rightarrow x=3$: vertical asymptote
37. 2
$\frac{2}{x^{2}+3 x+2}=\frac{a}{x+1}+\frac{b}{x+2}$
Multiply by $(x+1)(x+2)$.
$2=a(x+2)+b(x+1) \rightarrow 2=(a+b) x+2 a+b$
From the equation,
$a+b=0$ and $2 a+b=2$.
Therefore, $a=2$ and $b=-2$.
38. 2
$\frac{x}{x-2}=\frac{x-k}{x-4} \rightarrow x(x-4)=(x-2)(x-k)$
$x^{2}-4 x=x^{2}-(2+k) x+2 k \rightarrow(k-2) x=2 k$
Therefore, $x=\frac{2 k}{k-2} . \rightarrow$ If $k=2$, no solution.

Answer Explanations

Test 14 Answers and Explanations										
	1-1,	2	3	4	5	6	7	-8	9.	10
	C	A	C	A	C	B	B	C	A	C
	11	12	13.	14	15	16	17.	18	19	20
	C	D	D	D	C	3/2	44	6	9	1.5
	- 1.	-2 ${ }^{2}$	+ 3	4	-5.	6.	7\%	8, 8	- 9\%	10.6.
	C	D	C	B	C	C	C	C	C	C
	11	. 12	13	14	15.	16.	17	18	19	20,
	D	B	D	C	B	B	D	B	B	B
4	- 21	22	23	24.	25	26	-27	28.	29	30
	C	C	D	C	B	B	C	B	D	C
	- 31.	32.	33	34	35	36	37.	38		
	200	16	$12 / 5$ 2.4	8	8	12	800	3		

SECTION 3

1. C

$$
10^{-\frac{2}{3}}=\sqrt[3]{10^{-2}}=\sqrt[3]{\frac{1}{100}}
$$

2. A

$$
2 a^{2}-8 b^{2}=2(a+2 b)(a-2 b)=2(2)(10)=40
$$

3. C

The graph of a n even function is symmetric with respect to the \jmath-axis. D: Circle is not a function.
4. A

Domain of the graph is $x>5$.
5. D

Triangle $A B O$ is isosceles.
$B O=10$ and $O C=5$. Therefore, $A C=10+5=15$.
6. B

The vertex form of the equation is
$y=(x-1)^{2}+k-1$, minimum of y is $k-1$.
If $k-1=3$. They have only one solution.
Or, you can use discriminant.
$x^{2}-2 x+k=3 \rightarrow x^{2}-2 x+k-3=0$
In order to have only one solution, discriminant should be 0 .

$$
D=(-2)^{2}-4(1)(k-3)=0 \rightarrow k=4
$$

7. B

Let $x=$ length of an edge .
Volume is $a=x^{3} . \quad \rightarrow x=a^{\frac{1}{3}}$
Surface area is $6 x^{2}=6\left(a^{\frac{1}{3}}\right)^{2}=6 a^{\frac{2}{3}}=6 \sqrt[3]{a^{2}}$.
8. C

Answer Explanations

Sum of the roots: $a+b=4$
Product of the roots: $a b=2$
$(a+1)(b+1)=a b+(a+b)+1=2+4+1=7$
9. A

Add the equations. $8 x-8 y=40 \rightarrow x-y=5$
10. C

Zeros at $x=1$ and $3 \rightarrow f(x)=a(x-1)(x-3)$
For $(0,6), 6=a(-1)(-3) \rightarrow a=2$
Therefore, $f(x)=2(x-1)(x-3)$.
11. C

$$
a^{7}=\frac{2}{p} \rightarrow p=\frac{2}{a^{7}}=\frac{2}{a^{5} a^{2}}=\frac{2}{10 a^{2}}=\frac{1}{5 a^{2}}
$$

12. D

	price	$\#$	AMT
Adult	12	$n-c$	$12 n-12 c$
child	8	c	$8 c$

Total amount is $\$ 2000$.
$12 n-12 c+8 c=2000 \rightarrow 12 n=4 c+2000$
$n=\frac{4 c+2000}{12}=\frac{c+500}{3}$
13. D

When $x=0, y$-intercept is $f(0)=-6$.
14. D

The data are not spread farther from the mean than any other data.
15. C
$f(x)=x^{2}(x-2)=x^{3}-2 x^{2}$
The graph is translated 2 units to the right and 2 units down. $g(x)=f(x-2)-2$: Therefore, $g(x)=(x-2)^{3}-2(x-2)^{2}-2$.
16. $\frac{3}{2}$ or 1.5
$(x+y)^{2}=x^{2}+y^{2}+2 x y=10$
$(x-y)^{2}=x^{2}+y^{2}-2 x y=4$

Subtract. $4 x y^{\prime}=10-4=6 . \rightarrow x y^{\prime}=\frac{3}{2}$
17. 44

Input

$$
\begin{aligned}
& \frac{x}{3}=2 \rightarrow x=6 \rightarrow f(2)=6^{2}-2(6)=k=20 \\
& k=-4 . \quad f\left(\frac{x}{3}\right)=x^{2}-2 x-4
\end{aligned}
$$

For $f(-2) \rightarrow \frac{x}{3}=-2 \rightarrow x=-6$,
Therefore, $f(-2)=(-6)^{2}-2(6)-4=44$
18. 6

Since $\triangle B C E \sim \triangle A E M$, the ratio of any corresponding sides is $2: 1$.
Area of $\triangle A B M=\frac{6 \times 3}{2}=9$ and $\frac{B E}{E M}=\frac{2}{1}$
Therefore, the area of $\triangle A B E$ is $9 \times \frac{2}{3}=6$.
19. 9

Line $\ell: y=2 x+b \rightarrow$ using $(2,6) \rightarrow y=2 x+2$
Line $m: y=x+b \rightarrow \operatorname{using}(2,6) \rightarrow y=x+4$
Two x-intercepts are $Q(-4,0)$ and $R(-1,0)$.
$Q R=3$ and the height of $\triangle P Q R=6$.
Therefore, the area of $\triangle P Q R=\frac{3 \times 6}{2}=9$.
20. $\frac{1}{2}$

Answer Explanations

Since slope of the line is 1 , they have only one solution.
For $x<3, y=|x-3| \rightarrow y=-x+3$.
$x=-x+3 \rightarrow 2 x=3 \rightarrow x=\frac{1}{2}$
For $x \geq 3, y=|x-3| \rightarrow y=x-3$
Now solve: $x=x-3 \rightarrow 0 \neq-3$. (No solution)
Because -3 is not greater than or equal to 3 .

SECTION 4

1. C
k cent $=\frac{k}{100}$ dollars
Total cost is $m+\left(\frac{k}{100}\right) x$.
2. D)
$x>y \rightarrow$
$\%$ of increase $=\frac{x-y}{y} \times 100=\frac{100(x-y)}{y}$
3. C
$\triangle A B C$ is isosceles.
Since $A B=3 \sqrt{3}, A C=B C=3$. Therefore,
$B(x, y) \rightarrow x=1+3=4$ and $y=2+3=5$
4. B

Cofunction: $3 x+10+x-20=90 \rightarrow x=25$
5. C

The function could be $f(x)=5 x^{5}+\cdots+3$. y-intercept is 3 .
As $x \rightarrow \infty, y \rightarrow \infty$: Graph rises up to the right.
As $x \rightarrow-\infty, y \rightarrow-\infty$: Graph falls down to the left.
6. C
$y=2 x^{2}-8 x-3 \rightarrow y=2(x-2)^{2}-11$
Range: $y \geq-11$
7. C

$$
P=20000(1-0.07)^{10} \rightarrow 7 \% \text { decay }
$$

8. C
9. C
midpoint $=\frac{-10+16}{2}=3$
distance from mid point to the end point is $16-9=7$.
Thereore, $|x-3| \geq 9$.
10. C

Axis of symmetry: $x=\frac{a}{2}=2 \rightarrow a=4$ $y=x^{2}-4 x+b \quad$ Putting $(2,-5)$ in the equation. $f(2)=4-8+b=5 \rightarrow b=-1$ y-intercept $\rightarrow(0, b)=(0,-1)$
11. D

Think about their graphs as follows.

If $k=3$, one intersection. If $k<3$, two intersections. If $k>3$, no intersection.
12. B

From the vertex form, axis of symmetry is $x=b$.
From the zeros, axis of symmetry is
$x=\frac{-2+6}{2}=2$. Therefore $b=2$.
Now $f(x)=a(x-2)^{2}+10$. Using
$(6,0)$ or $(0,-4), 0=a(4)^{2}+10 \rightarrow a=-\frac{5}{8}$
13. D

In order to have only one solution, $\frac{2}{a} \neq \frac{-3}{b}$.
D: $\frac{2}{10} \neq \frac{-3}{10}$
14. C
$\triangle O A M \sim \triangle M D N, D N=8$ and $O A=4$
$\frac{D N}{O A}=\frac{M N}{O M}=\frac{1}{2}$

Answer Explanations

Therefore, $O M=12 \times \frac{1}{3}=4 \rightarrow M(0,4)$
15. B
slope $=\frac{\Delta F}{\Delta C}=\frac{9}{5} \rightarrow \frac{27}{\Delta C}=\frac{9}{5} \rightarrow$
$\Delta C=\frac{27 \times 5}{9}=15$
16. B

Actual profit $=700$ and predicted profit $=500$ for ticket price of $\$ 40$.
$\%$ decrease $=\frac{|500-700|}{700} \times 100=28.57 \cdots \approx 28 \%$
17. D

$$
\frac{25}{40} \times 100=62.5 \%
$$

18. B

Multiply by $(x-1)(x-2)$.
$x+1=a(x-2)+b(x-1) \rightarrow$
$x+1=(a+b) x-2 a-b$, from the equation
$a+b=1$ and $-2 a-b=1 \rightarrow a=-2, b=3$
19. B

$$
k^{2}=5 \times 8=40 \rightarrow k=2 \sqrt{10}
$$

20. B

At point $(0,4), b$ has a maximum value.
21. C

Since machine A is available 20 hours,
$1(x)+2(y) \leq 20$
Machine B is available 15hours,
$2(x)+3(y) \leq 15$
22. C

For original triangle, $A=\frac{b h}{2}$
For altered triangle, $A^{\prime}=\frac{(1.2 b) h^{\prime}}{2}$
Since area is decreased by 16%, $A^{\prime}=(1-0.16) A=0.84 A$.
$\frac{(1.2 b) h^{\prime}}{2}=0.84\left(\frac{b h}{2}\right) \rightarrow h^{\prime}=0.7 h$
Since $h^{\prime}=(1-0.3) h$, the height decreases by 30%.
23. D

Remainder theorem: $P(1)=1-5+k=3 \rightarrow k=7$
$P(x)=x^{2}-5 x+7$
When $P(x)$ is divided by $x+1$, the remainder is $P(-1)=1+5+7=13$.
24. C
$(2-3 i) a+(3-2 i) b=5 i \rightarrow$
$(2 a+3 b)-(3 a-2 b) i=0+5 i$
From the equation, $2 a+3 b=0$ and $3 a+2 b=-5$.
Solution to the system of equations above is
$(-3,2) . \quad a=-3$ and $b=2$.
25. B

Area of $\triangle O A B=\frac{3 \times 4}{2}$, or $\frac{5 \times O P}{2}$.
Therefore, $\frac{3 \times 4}{2}=\frac{5 \times O P}{2} \rightarrow O P=2.4$

Answer Explanations

26. B

$$
f(x-1)=2^{x-1} \text { and } f(x)=2^{x}
$$

$2^{x-1}=2^{x}-8 \rightarrow \frac{2^{x}}{2}=2^{x}-8 \rightarrow$ Multiply by 2
$2^{x}=2\left(2^{x}\right)-16 \rightarrow 2^{x}=2\left(2^{x}\right)-2^{x}=16$
Finally, $(2-1) 2^{x}=16 \rightarrow 2^{x}=2^{4} \rightarrow x=4$
27. C

Change the variable. $f\left(\frac{k-2}{2}\right)=5 k-10$
$\frac{k-2}{2}=x \rightarrow k=2 x+2$. Now replace k with x.
$f(x)=5(2 x+2)-10 \rightarrow f(x)=10 x$
28. B

$\angle A O B=180-60=120$
Area of sector $A O B$ is $\pi(6)^{2} \times \frac{1}{3}=12 \pi$
$A P=6 \sqrt{3}$ (Special triangle)
Area of $\triangle A O P=\frac{6 \times 6 \sqrt{3}}{2}=18 \sqrt{3}$
Area of $A P B O=18 \sqrt{3} \times 2=36 \sqrt{3}$
Therefore, the area of shaded region is
$36 \sqrt{3}-12 \pi=24.6547 \cdots \approx 25$
29. D

The graph of $f(x)=x^{2}+m x+4>0$ for all x is as follows.

The graph doesn't intersect the x-axis.
Discriminant must be less than 0 .
$D=m^{2}-4(1)(4)<0 \rightarrow(m+4)(m-4)<0$
Solution is $-4<m<4$.
30. C
A: neither B: even
D: odd
31. 200
$\frac{1}{10} x+\frac{1}{20} y=5 \rightarrow 2 x+y=100$
$4 x+2 y=2(2 x+y)=2(100)=200$
32. 16
$2 \sqrt{x}+8=x \rightarrow 2 \sqrt{x}=x-8 \rightarrow$ squaring
$4 x=x^{2}-16 x+64 \rightarrow 0=x^{2}-20 x+64$
Factor: $(x-4)(x-16)=0 \rightarrow x=4,16$
Check: $x=4$ doesn't work.
33. $\frac{12}{5}$ or 2.4
$x^{2}-y^{2}=12$ and $x+y=5$
$(x+y)(x-y)=12 \rightarrow 5(x-y)=12 \rightarrow$
$x-y=\frac{12}{5}$
34. 8

Since the parabola has zeros at $x=0$ and $x=16$,
the quadratic equation in factored form is
$y=a x(x-16)$.Putting $(12,6)$ in the equation.
$6=a(12)(12-16) \rightarrow a=-\frac{1}{8}$
Therefore, $y=-\frac{1}{8} x(x-16)$. When $x=8$, the graph has a maximum.
Maximum of $y=-\frac{1}{8}(8)(8-16)=8$ meters.
35. 8

Solve for the intersections.
$(x-5)^{2}-10=6 \rightarrow(x-5)^{2}=16 \rightarrow$
$(x-5)=4,-4 \rightarrow x=9,1$
Therefore, $A B=9-1=8$.

Answer Explanations

36. 12
$A C S P$ is a rectangle and $\triangle A B C$ is a righl triangle. $P S=A C$ (Opposite sides are equal)

$P S=A C=\sqrt{13^{2}-5^{2}}=12$
37. 800

Number of units produced is n.
Revenue $=6 \times n=6 n$
Cost $=3400-n$
Profit $=$ revenuc $-\cos t=6 n-(3400-n)$
$=7 n-3400$
Profit is $\$ 2200$. Therefore,
$7 n-3400=2200 \rightarrow 7 n=5600 \rightarrow n=800$
38. 3

Area of $\triangle A O B=\frac{8 \times 12}{2}=48$
Area of $\triangle A P O=\frac{1}{4}$ of $\triangle A O B=\frac{1}{4}(48)=12$

Also the area of $\triangle A O B$ is $\frac{8 \times a}{2}=4 a$.
Therefore, $4 a=12 \rightarrow a=3$.

Answer Explanations

Test 15			Answers and Explanations							
$\begin{array}{\|c} \text { SECTION } \\ \mathbf{3} \end{array}$	1 1	2	3	[4,	S	6	7	8	9 9	10
	B	B	C	B	C	C	D	C	A	D
	11.	12	13,	14	-15	16.	17	18	19\%	20
	C	C	D	C	B	5	18	6	16/3	3/5
SECTION 4	- 1.	2 2.	-3.	-4.0	5	6.	7\%	8	-9	10
	B	C	B	C	D	C	B	C	D	B
	11.	(2)	13.	14.	15	16	17.	188	+19.	-20
	C	C	C	C	D	A	B	B	D	C
	21.	22 \%	23	-24	25.	26	27.1	28.	29	30
	B	C	C	A	D	A	D	B	C	B
	31.	-32	33	34.	${ }^{35}$	36	37	38		
	5/4	3/4	5	40	7	. 005	2442	6		

SECTION 3

1. B
$\frac{1}{10} x^{2}-\frac{1}{5} x=\frac{4}{5} \rightarrow x^{2}-2 x=8 \rightarrow x^{2}-2 x-8=0$
$\rightarrow(x-4)(x+2)=0 \rightarrow x=4,-2$
2. B

Since $a=10 b, \frac{15 b}{2 a}=\frac{15 b}{2(10 b)}=\frac{15 b}{20 b}=\frac{3}{4}$.
3. C
$\frac{a^{\frac{1}{2}}}{a^{-\frac{1}{3}}}=a^{\frac{1}{2}\left(-\frac{1}{3}\right)}=a^{\frac{5}{6}}=\sqrt[6]{a^{5}}$
4. B

A: ratc of change $=\frac{2}{1}=2$
B: rate of change $=\frac{6-2}{1}=4$

C: rate of change $=\frac{4-5.5}{1}=-1.5$
D: ratc of change $=\frac{0-4}{1}=-4$
5. C
$\frac{8}{x}-\frac{12}{x+10}=0 \rightarrow \frac{8}{x}=\frac{12}{x+10} \rightarrow 12 x=8 x+80$
$4 . x=80 \rightarrow x=20$
Therefore, $\frac{x}{4}=\frac{20}{4}=5$.
6. C

Add the equations: $7 a-7 b=-14$
$\rightarrow a-b=-2$
7. D

Line $y=m x-5$ contains $(a, 0)$.
$0=m a-5 \rightarrow m=\frac{5}{a}$
8. C

$$
-(x-10)^{2}+10=-26 \rightarrow(x-10)^{2}=36
$$

Answer Explanations

$x-10=6,-6 \rightarrow x=16,4$
Therefore, $P Q=16-4=12$.
9. A

Remainder Theorem;
$P(\mathrm{l})=3-5+5=a \rightarrow a=3$
10. D

If $x=$ his sales, then $3000+\frac{k}{100}(x)=7200$.
$\frac{k x}{100}=4200 \rightarrow x=\frac{420000}{k}$
11. C

	speed	hour	distance
Forward	50	x	$50 x$
Backward	30	$x+1$	$30 x+30$

Same distance: $50 x=30 x+30 \rightarrow x=1.5$ hours
Returning trip: $x+1=1.5+1=2.5$ hours
12. C

For zeros: $2(x-4)^{2}-10=0 \rightarrow(x-4)^{2}=5$
$x-4= \pm \sqrt{5} \rightarrow x=4 \pm \sqrt{5}$
13. D

Slope of the line $=\frac{40-30}{200-100}=\frac{1}{10}$
Total cost $C^{\prime}=30+\frac{1}{10}(280-100)=48$ dollars
14. C
$y=\frac{1}{10}(x-100)+30$
15. B

Over 40; $(80+40)+(100+70)+(10+20)=320$
$31-40$ with against:; 100
$P=\frac{100}{320}=\frac{5}{16}$
16. 5

Since $x=-1$ is a zero,
$f(-1)=2(-1)^{2}-8(-1)+k=0 \rightarrow k=-10$
Therefore, $f(x)=2 x^{2}-8 x-10$.

Now solve.
$2\left(x^{2}-4 x-5\right)=0 \rightarrow 2(x-5)(x+1)=0$
You can see the other zero is $x=5$.
17. 18
$f(x+1)=5 x+k: x+1=3 \rightarrow x=2$
Put this number in the equation.
$f(2+1)=5(2)+k \rightarrow 10+k=8 \rightarrow k=-2$
Now we got $f(x+1)=5 x-2$. Putting $x=4$, $f(1+4)=5(4)-2 \rightarrow f(5)=18$
18. 6

Since $\triangle A F D \sim \triangle E F G$,
$\frac{x}{x+6}=\frac{4}{12} \rightarrow 12 x=4 x+24 \rightarrow x=3$.
Therefore, the area of $\triangle E F G$ is $\frac{4 \times 3}{2}=6$.
19. $\frac{16}{3}$

In order to have infinitely many solutions,
$\frac{3}{a}=\frac{-a}{-b}=\frac{3}{4}$. From the equation, $a=4$,
and $\frac{-4}{-b}=\frac{3}{4} \rightarrow b=\frac{6}{3}$.
20. $\frac{3}{5}$

The value of $\sin C$ is equal to the value of $\sin \angle B A D$. Therefore, $\sin \angle C=\sin \angle B A D=\frac{3}{5}$.

Answer Explanations

SECTION 4

1. B

$$
\frac{3}{2}\left(x+\frac{3}{4}\right)=3 \rightarrow x+\frac{3}{4}=2 \rightarrow x=\frac{5}{4}
$$

2. C

	time	rate	combined
Mina	2	$\frac{1}{2}$	$\frac{1}{2}+\frac{1}{4}$
Ruth	4	$\frac{1}{4}$	$=\frac{3}{4}$

Time $=1 \div \frac{3}{4}=\frac{4}{3}$ hours $\rightarrow I$ hour 20 minutes
3. B
$2 x^{2}-8 x-90=0 \rightarrow x^{2}-4 x-45=0$
$x^{2}-4 x+4=49 \rightarrow(x-2)^{2}=49$
4. C
$0=2 x^{2}-9 x+4 \rightarrow(2 x-1)(x-4)=0$
$x=4, \frac{1}{2}$: Therefore, $P Q=4-0.5=3.5$.
5. D
$g(-1)=3$ and $f(3)=10$
6. C

Two is in the middle.
7. B

$$
(3-4 i)^{2}=a+b i \rightarrow-7-24 i=a+b i \rightarrow a=-7
$$

8. C

$$
\left(x+\frac{1}{x}\right)^{2}=\left(x-\frac{1}{x}\right)^{2}+4
$$

9. D
10. B

$x=3+2+1=6$
11. C
$k^{2}-16=16-k^{2} \rightarrow 2 k^{2}=32 \rightarrow k^{2}=16$
Therefore, $k= \pm 4$.
12. C
$\sin \left(2 x-\frac{\pi}{12}\right)=\cos \left(x+\frac{\pi}{12}\right):$ Cofunction
$2 x-\frac{\pi}{12}+x+\frac{\pi}{12}=\frac{\pi}{2} \rightarrow 3 x=\frac{\pi}{2} \rightarrow x=\frac{\pi}{6}$
13. C
$\frac{5.5 M-3.5 M}{1}=2 M$ per year
14. C
$\frac{6 M-1 M}{5}=1,000,000$
15. C

Since $(0,3)$ lies on the graph,
$3=(0-a)(0-3) \rightarrow 3=3 a \rightarrow a=1$
$f(x)=(x-1)(x-3) \rightarrow$
Axis of symmetry: $x=\frac{1+3}{2}=2^{\cdots}$
Therefore, minimum of f is $f(2)=-1$.
17. B
$a x^{2}+b x+c=a\left(x^{2}+b x\right)+c \rightarrow$ $a\left(x+\frac{b}{2 a}\right)^{2}+\frac{4 a c-b^{2}}{4 a}$
Therefore, $h=-\frac{b}{2 a}$.
18. B
$\Delta s=0.6 \times 10=6$ meters per second

Answer Explanations

19. D
$g(2)=4-2 a+b$ and $g(10)=100+10 a+b$
$g(2)=g(10) \rightarrow a=-8$
20. C

Area of the rectangle is $2 a\left(10-2 a^{2}\right)=20 a-4 a^{3}$.
21. B
$x^{2}-2 c x+y^{2}-4 b x=0 \rightarrow$ Standard form is
$(x-a)^{2}+(y-2 b)^{2}=a^{2}+4 b^{2}$.
Center $(2,4)=(a, 2 b) \rightarrow a=2, b=2$
Therefore, $r=\sqrt{a^{2}+4 b^{2}}=\sqrt{20}=2 \sqrt{5}$.
22. C
$O P=10$ and $O Q=5$
Since the triangles are similar, corresponding sides are half.

Therefore, coordinates of point Q is $(-3,4)$.
23. C
$p g<0 \rightarrow\left\{\begin{array}{l}p>0 \text { and } q<0 \\ p<0 \text { and } q>0\end{array}\right.$
Therefore, the graph g has always a positive slope.
24. A
$\frac{8^{x}}{2^{y}}=32 \rightarrow \frac{2^{3 x}}{2^{y}}=2^{5} \rightarrow 2^{3 x-2 y}=2^{5}$

From the equation: $3 x-y=5$
Solve the system of equations.
$5 x+y=13$ and $3 x-y=5 \rightarrow x=2.25$
25. D
$h(t)=-4.9 t^{2}+49 t \rightarrow-4.9 t(t-10)=0$
$t=0$ and 10 Therefore, $10-0=10$.
26. A

At $t=5$, it has a maximum.
Therefore, $h(5)=-4.9(5)^{2}+49(5)=122.5$.
27. D

Slope of the line is $\frac{600-800}{150-0}=-\frac{4}{3}$.
Now, $y=-\frac{4}{3} x+800$.
For $x=400$,
$y=-\frac{4}{3}(400)+800=266.66 \cdots \approx 267$.
28. B

The x-intercepts of thegraphs
are $(1,0)$ and $(10,0)$. The intersection of the graphs: $\rightarrow 2 x-2=-x+10 \rightarrow x=4$ and $y=6$
Since $A C=9$ and the height is 6 , the area of $\triangle A B C$ is $\frac{9 \times 6}{2}=27$.
29. C

Discriminant should be zero.
$x^{2}=2 x-k \rightarrow x^{2}-2 x+k=0$
$D=(-2)^{2}-4(1)(k)=0 \rightarrow k=1$
30. B

Answer Explanations

Slope of f is $\frac{15}{6}=\frac{5}{2} . \rightarrow f(x)=\frac{5}{2} x$
Find the points of intersection.
$x^{2}-4 x+3=\frac{5}{2} x \rightarrow 2 x^{2}-13 x+6=0$
$(2 x-1)(x-6)=0 \rightarrow x=\frac{1}{2}, 6$
Or, you can use sum of the roots.
31. $5 / 4$
$9^{x-1}=\sqrt{27} \rightarrow 3^{2(x-1)}=3^{\frac{3}{2}} \rightarrow 2 x-1=\frac{3}{2}$
$x=\frac{5}{4}$
32. $3 / 4$
$f(-1)=-3 \rightarrow(-1,-3), f(3)=12 \rightarrow(3,12)$
$f(0)=k \rightarrow(0, k)$
Since all these points lie on the line, slopes
between ant two points are equal.
$\frac{12-(-3)}{3-(-1)}=\frac{k-12}{0-3} \rightarrow k=\frac{3}{4}$
33. 5
$x-\sqrt{x+11}=1 \rightarrow x-1=\sqrt{x+11}$
$x^{2}-2 x+1=x+11 \rightarrow x^{2}-3 x-10=0 \rightarrow$
$(x-5)(x-2)=0 \rightarrow x=5,2$ (not working)
34. 40
$y=200+8 x$ and $y=360+4 x$
Therefore, $200+8 x=360+4 x \rightarrow x=40$
35. 7

Let $X=x-10$, then $X^{2}+6 X+9=0$
$(X+3)^{2}=0 \rightarrow X=-3 \rightarrow X-10--3 \rightarrow x=7$
36. . 005
$A=2000\left(1+\frac{0.02}{4}\right)^{4 t} \rightarrow c=.005$
37. 2442
$A=2000(1+0.005)^{40}=2441.588 \cdots \approx 2442$
38. 6

Similar triangles:
$\frac{16-h}{5}=\frac{16}{8} \rightarrow 128-8 h=80 \rightarrow 8 h=48$
$h=8$

